博碩士論文 110328006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.119.118.99
姓名 張詠竣(Yong-Jun Zhang)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 超臨界顆粒流場中雙圓柱阻礙物震波交互影響之研究
相關論文
★ 二維儲槽濾材顆粒流場之研究★ 粗細顆粒混合之流動性質分析
★ MOCVD腔體熱流場與新式進氣檔板之設計模擬分析研究★ 稻殼於流體化床進行快速裂解產製生質燃油之研究
★ 利用CFD 模擬催化生質能在快速熱裂解中碳沉積對於催化劑去活化反應影響★ 反向氣流對微小粉末於儲槽排放行為影響之研究
★ 積層製造自動化粉末回收系統-系統設計及其混合器之優化★ 雙床氣化爐冷模型中CFB入口速度、BFB床高和顆粒尺寸對矽砂之壓力分佈和質量流率的影響
★ 以實驗方式探討崩塌流場對可侵蝕底床侵蝕與堆積現象之影響★ 移動式顆粒床過濾器應用於去除PM2.5之研究
★ 添加微量液體對振動床中顆粒體分離現象的影響★ 不同表面粗糙度的大顆粒在垂直式振動床中動態行為之研究
★ 二維剪力槽中顆粒體群聚現象之研究探討★ 直渠道顆粒流之顆粒密度分離效應
★ 粉粒體於儲槽排放行為及氣泡現象之研究★ 初始體積占有率影響顆粒崩塌行為之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究是以開放式的傾斜滑槽作為實驗設備,並在滑槽中設置兩個圓柱形的阻礙物以實驗的方式探討不同實驗控制參數(滑槽傾斜角、圓柱間距),對超臨界顆粒流撞擊阻礙物後產生的震波交互影響。為了觀察流體在自由表面的速度,攝影機垂直於滑槽上方拍攝影像,並利用粒子影像測速(Particle image velocimetry, PIV)計算速度場,而流體深度則是使用雷射掃描儀搭配旋轉編碼器來量測。實驗結果分析了流體深度、平均速度、擾動速度、粒子溫度以及福祿數的變化,根據這些分析參數的結果,建立了參數彼此之間的關聯性。
由實驗結果可以知道,顆粒經過震波後會有流體深度突然上升以及速度突然下降的不連續變化,當兩個震波彼此交互影響時,流體深度會上升得更高,影響範圍也變得更遠。在低傾斜角時,我們發現最大流體深度、平均擾動速度以及平均粒子溫度是隨著圓柱間距增加而減小,反之,在高傾斜角時,是隨著圓柱間距增加而增加。表示流場擾動速度與粒子溫度的增加會導致顆粒的流動變得稀薄,影響流體深度的膨脹效應越強,使最大流體深度增加。最後,我們從流場的深度剖面發現不同實驗組別間,有著不同的流動形態,並將所有組別的結果繪製成相圖呈現,還發現流動形態與最小福祿數有關。
摘要(英) This study investigates the interaction effects of shock waves between two circular cylinder obstacles in supercritical granular flow using an open inclined chute as the experimental equipment. Different experimental control parameters, such as the inclination angle of the chute and the spacing between the cylinders, are used to investigate the shock wave interaction after the granular media impacts obstacles. A camera perpendicular to the surface of the chute will be used to record the free surface granular flow images, and particle image velocimetry (PIV) is employed to calculate the velocity fields. The fluid depth is measured using a laser scanner combined with an encoder. The experimental results analyze the variations in fluid depth, mean velocity, fluctuation velocity, granular temperature, and Froude number. According to these analysis parameters, we also established correlations between each other.
From the results, it is observed that the granular flow experience discontinuous changes in fluid depth with sudden increases and decreases in velocity after shock waves. When two shock waves interact with each other, the fluid depth increases even higher, and the influence range becomes larger. At low inclination angles, the maximum fluid depth, average fluctuation velocity, and average granular temperature decrease with the increase in cylinder spacing. Conversely, at high inclination angles, these parameters increase with increasing cylinder spacing. The results show that the increase in fluctuation velocity and granular temperature will cause the granular flow field to become dilute. The expansion behavior of the fluid will further increase the maximum fluid depth. Finally, we identified different flow types from the depth profile of the flow field. It can be seen from the phase diagram that the flow type is related to the minimum Froude number.
關鍵字(中) ★ 顆粒流
★ 超臨界流
★ 傾斜滑槽
★ 阻礙物
★ 震波
關鍵字(英) ★ Granular flow
★ Supercritical flow
★ Inclination chute
★ Obstacle
★ Shock wave
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
附圖目錄 vi
附表目錄 ix
符號目錄 x
第一章 簡介 1
1.1 前言 1
1.2 顆粒崩塌流介紹 2
1.3 顆粒流場中設置阻礙物之相關研究 3
1.4 顆粒流撞擊阻礙物產生的現象 5
1.5 研究目的 7
第二章 實驗方法與原理 11
2.1 實驗設備與材料 11
2.2 實驗原理與方法 14
2.2.1 流體深度分析 14
2.2.2 流場速度分布計算 14
2.2.3 擾動速度計算 16
2.2.4 粒子溫度之概念 17
2.3 實驗步驟 18
第三章 結果與討論 28
3.1 流體深度 28
3.1.1 流體深度分布圖 28
3.1.2 流體深度於流動方向之變化 29
3.2 流場速度與福祿數 30
3.2.1 速度場分布圖 31
3.2.2 平均速度於流動方向之變化 31
3.2.3 福祿數於流動方向之變化 32
3.2.4 擾動速度與粒子溫度 33
3.3 馬赫角與尾流角 34
3.3.1 馬赫角 34
3.3.2 尾流角 35
3.4 流動形態與震波型態 36
3.4.1 流動形態 36
3.4.2 震波型態 37
第四章 結論 64
參考文獻 66
參考文獻 1. Wang, Y.F., Q.G. Cheng, A.W. Shi, Y.Q. Yuan, B.M. Yin, and Y.H. Qiu, “Sedimentary deformation structures in the Nyixoi Chongco rock avalanche: implications on rock avalanche transport mechanisms” Landslides, Vol. 16(3), pp. 523-532, (2019).
2. Li, K., Y.F. Wang, Q.W. Lin, Q.G. Cheng, and Y. Wu, “Experiments on granular flow behavior and deposit characteristics: implications for rock avalanche kinematics” Landslides, Vol. 18(5), pp. 1779-1799, (2021).
3. Edwards, A.N., S. Viroulet, C.G. Johnson, and J. Gray, “Erosion-deposition dynamics and long distance propagation of granular avalanches” Journal of Fluid Mechanics, Vol. 915, A9, (2021).
4. Yuu, S. and T. Umekage, “Onset mechanism of granular avalanches in inclining layers using a continuum model” Advanced Powder Technology, Vol. 33(8), 103659, (2022).
5. Chou, S.H., S.J. Yang, and S.S. Hsiau, “Investigation on the erosion and deposition process of granular collapse flow on an erodible inclined plane” Powder Technology, Vol. 414, 118086, (2023).
6. Takagi, D., J.N. McElwaine, and H.E. Huppert, “Shallow granular flows” Physical Review E, Vol. 83(3), 031306, (2011).
7. Lube, G., H.E. Huppert, R.S.J. Sparks, and A. Freundt, “Granular column collapses down rough, inclined channels” Journal of Fluid Mechanics, Vol. 675, pp. 347-368, (2011).
8. Ikari, H. and H. Gotoh, “SPH-based simulation of granular collapse on an inclined bed” Mechanics Research Communications, Vol. 73, pp. 12-18, (2016).
9. Zuriguel, I., A. Janda, A. Garcimartin, C. Lozano, R. Arevalo, and D. Maza, “Silo Clogging Reduction by the Presence of an Obstacle” Physical Review Letters, Vol. 107(27), 278001, (2011).
10. Endo, K., K.A. Reddy, and H. Katsuragi, “Obstacle-shape effect in a two-dimensional granular silo flow field” Physical Review Fluids, Vol. 2(9), 094302, (2017).
11. Yang, S.C. and S.S. Hsiau, “The simulation and experimental study of granular materials discharged from a silo with the placement of inserts” Powder Technology, Vol. 120(3), pp. 244-255, (2001).
12. Cui, X., J. Gray, and T. Johannesson, “Deflecting dams and the formation of oblique shocks in snow avalanches at Flateyri, Iceland” Journal of Geophysical Research-Earth Surface, Vol. 112(F4), F04012, (2007).
13. Choi, C.E., C.W.W. Ng, D. Song, J.H.S. Kwan, H.Y.K. Shiu, K.K.S. Ho, and R.C.H. Koo, “Flume investigation of landslide debris-resisting baffles” Canadian Geotechnical Journal, Vol. 51(5), pp. 540-553, (2014).
14. Wang, F., X.Q. Chen, and J.G. Chen, “Experimental study on the energy dissipation characteristics of debris flow deceleration baffles” Journal of Mountain Science, Vol. 14(10), pp. 1951-1960, (2017).
15. Wang, Y.B., X.F. Liu, C.R. Yao, Y.D. Li, S.Z. Liu, and X. Zhang, “Finite Release of Debris Flows around Round and Square Piers” Journal of Hydraulic Engineering, Vol. 144(12), 06018015, (2018).
16. Hinton, E.M., A.J. Hogg, and H.E. Huppert, “Viscous free-surface flows past cylinders” Physical Review Fluids, Vol. 5(8), 084101, (2020).
17. Huang, Y., B. Zhang, and C.Q. Zhu, “Computational assessment of baffle performance against rapid granular flows” Landslides, Vol. 18(1), pp. 485-501, (2021).
18. Cui, X., “Shock Waves: From Gas Dynamics to Granular Flows” International Journal of Aeronautics and Aerospace Engineering, Vol. 1(1), pp. 7-9, (2019).
19. Tregaskis, C., C.G. Johnson, X. Cui, and J. Gray, “Subcritical and supercritical granular flow around an obstacle on a rough inclined plane” Journal of Fluid Mechanics, Vol. 933, A25, (2022).
20. Savage, S.B., “Gravity flow of cohesionless granular materials in chutes and channels” Journal of Fluid Mechanics, Vol. 92(1), pp. 53-96, (1979).
21. Gray, J., Y.C. Tai, and S. Noelle, “Shock waves, dead zones and particle-free regions in rapid granular free-surface flows” Journal of Fluid Mechanics, Vol. 491, pp. 161-181, (2003).
22. Cui, X., “Computational and experimental studies of rapid free-surface granular flows around obstacles” Computers & Fluids, Vol. 89, pp. 179-190, (2014).
23. Khan, A., S. Verma, P. Hankare, R. Kumar, and S. Kumar, “Shock-shock interactions in granular flows” Journal of Fluid Mechanics, Vol. 884, R4, (2020).
24. Cui, X., “Strong oblique shock waves in granular free-surface flows” Physics of Fluids, Vol. 33(8), 083302, (2021).
25. Chen, Z., D. Rickenmann, Y. Zhang, and S.M. He, “Effects of obstacle′s curvature on shock dynamics of gravity-driven granular flows impacting a circular cylinder” Engineering Geology, Vol. 293, 106343, (2021).
26. Cui, X.J., M. Harris, M. Howarth, D. Zealey, R. Brown, and J. Shepherd, “Granular flow around a cylindrical obstacle in an inclined chute” Physics of Fluids, Vol. 34(9), 093308, (2022).
27. Khan, A., P. Hankare, S. Verma, Y. Jaiswal, R. Kumar, and S. Kumar, “Detachment of strong shocks in confined granular flows” Journal of Fluid Mechanics, Vol. 935, A13, (2022).
28. Cui, X. and J. Gray, “Gravity-driven granular free-surface flow around a circular cylinder” Journal of Fluid Mechanics, Vol. 720, pp. 314-337, (2013).
29. Baker, J.L., T. Barker, and J. Gray, “A two-dimensional depth-averaged mu(I)-rheology for dense granular avalanches” Journal of Fluid Mechanics, Vol. 787, pp. 367-395, (2016).
30. Russell, A.S., C.G. Johnson, A.N. Edwards, S. Viroulet, F.M. Rocha, and J. Gray, “Retrogressive failure of a static granular layer on an inclined plane” Journal of Fluid Mechanics, Vol. 869, pp. 313-340, (2019).
31. Wu, Y.-B., Z. Duan, J.-B. Peng, and Q. Zhang, “Influences of Slope Angle on Propagation and Deposition of Laboratory Landslides” Earth Surface Dynamics Discussions, pp. 1-34, (2022).
32. Sarno, L., A. Carravetta, Y.C. Tai, R. Martino, M.N. Papa, and C.Y. Kuo, “Measuring the velocity fields of granular flows - Employment of a multi-pass two-dimensional particle image velocimetry (2D-PIV) approach” Advanced Powder Technology, Vol. 29(12), pp. 3107-3123, (2018).
33. Chung, Y.C., C.W. Wu, C.Y. Kuo, and S.S. Hsiau, “A rapid granular chute avalanche impinging on a small fixed obstacle: DEM modeling, experimental validation and exploration of granular stress” Applied Mathematical Modelling, Vol. 74, pp. 540-568, (2019).
34. Wang, S.S., R. Li, Q. Chen, G. Zheng, V. Zivkovic, and H. Yang, “Experimental measurement of granular flow layers in the chute” Powder Technology, Vol. 376, pp. 22-30, (2020).
35. Sheng, L.T., S.S. Hsiau, and N.W. Hsu, “Experimental study of the dynamic behavior and segregation of density-bidisperse granular sliding masses at the laboratory scale” Landslides, Vol. 18(6), pp. 2095-2110, (2021).
36. Nobach, H. and C. Tropea, “Improvements to PIV image analysis by recognizing the velocity gradients” Experiments in Fluids, Vol. 39(3), pp. 612-620, (2005).
37. Ogawa, S. “Multitemperature theory of granular materials”. In Proc. of the US-Japan Seminar on Continuum Mechanical and Statistical Approaches in the Mechanics of Granular Materials, Tokyo, (1978).
38. Heil, P., E.C. Rericha, D.I. Goldman, and H.L. Swinney, “Mach cone in a shallow granular fluid” Physical Review E, Vol. 70(6), pp. 060301, (2004).
39. Garai, P., S. Verma, and S. Kumar, “Visualization of shocks in granular media” Journal of Visualization, Vol. 22(4), pp. 729-739, (2019).
指導教授 蕭述三(Shu-San Hsiau) 審核日期 2023-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明