博碩士論文 110328013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:67 、訪客IP:3.144.242.195
姓名 王莉惠(Li-Hui Wang)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 順序熱蒸鍍全無機混合鹵化物鈣鈦礦紅色發光二極體之研究
(The Study of Sequential Vacuum Deposition of All-Inorganic Hybrid Halide Perovskite For Red Light Emitting Diode)
相關論文
★ 奈微米球粗化基板技術 暨提升OLED元件出光效率研究★ 銀-聚苯乙烯殼核球於高分子分散液晶薄膜元件之應用
★ ITO 奈微米週期結構電極提升OLED 元件發光效率之研究★ 以CaTiO3應用於鈣鈦礦太陽能電池電子傳輸層之研究
★ 奈微米結構於鈣鈦礦太陽能電池光捕捉應用之研究★ 超薄類鑽碳膜之研究
★ 利用鈣/鈦複合物作為 鈣鈦礦太陽能電池介孔層之研究★ 在低溫製程下製作鈣/鈦複合物作為鈣鈦礦太陽能電池介孔層之研究
★ 氟摻雜氧化錫奈米週期結構電極應用於鈣/鈦複合物作為鈣鈦礦太陽能電池介孔層之研究★ 具奈米結構之氟摻雜氧化錫玻璃基板應用於鈣鈦礦太陽能電池之研究
★ 快速熱退火之石墨烯特性分析★ 利用光發射光譜儀監控高功率脈衝磁控濺鍍光學薄膜之研究
★ 利用馬倫哥尼效應製備高品質高效率鈣鈦礦太陽能電池★ 利用溶劑萃取法結合綠色溶劑製備鈣鈦礦太陽能電池
★ 奈米圖案化基板於白光有機發光二極體暨有機鈣鈦礦太陽能電池效率增益之研究★ 單源熱蒸鍍無機鈣鈦礦薄膜暨特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-1以後開放)
摘要(中) 鈣鈦礦是一種具有可調能隙特性的材料,可調節其光致和電致發光的波長。透過改變鈣鈦礦結構中的X位鹵化物成份配比,或在A、B位摻雜不同的陽離子,能夠調控出所需的特定光致、電致發光波長,以達到廣色域的目標,涵蓋紅、綠、藍三個原色的CIE色域座標。
本研究使用順序熱蒸鍍法製備鈣鈦礦CsPbI3-xBrx薄膜。在製備過程中,探討了不同製備方式對薄膜成分的影響,以及不同層數的組合,例如:單層的混合鈣鈦礦粉末(CsPbI3+CsPbBr3),如雙層(CsBr/PbI2)、(CsPbI3/CsPbBr3)、(CsI/CsPbI3+CsPbBr3)、三層(CsI/CsPbI3/CsPbBr3)、四層(CsI/CsPbI3/CsI/CsPbBr3)等。
研究主要透過XRD與UV-vis光譜等儀器來分析材料在退火與未退火條件下的成分和結晶型態。透過這些儀器分析資料,評估了不同製程下薄膜成分的變化。
經過仔細的評估和比較後,最終選擇使用單一順序熱蒸鍍CsI/混粉鈣鈦礦(CsPbI3+CsPbBr3)的方法來製備CsPbI3-xBrx薄膜。這種製備方式在順序熱蒸鍍法中表現優異,製程方式較為簡便且較為省時。在退火處理後,通過UV-vis光譜和XRD分析證實薄膜的組成成份和結晶相都符合我們所需的黑色相CsPbI3-xBrx薄膜。
在電致發光(LED發光)方面,在2.74V時,元件達到最大亮度為135.4nit,其CIE1931色度座標為(0.7239, 0.2732),對應的發光波長接近正紅光波長的648nm。
摘要(英) Perovskite is a material with adjustable bandgap properties, allowing for tuning its wavelength in both photoluminescence and electroluminescence. By changing the halide composition ratio or doping different cations, specific photoluminescence and electroluminescence wavelengths can be achieved, covering a wide color range including red, green, and blue CIE1931 color coordinates.
In this study, we prepared Perovskite CsPbI3-xBrx thin films using the sequential thermal evaporation method. Various preparation methods and layer combinations were explored, including single-layer with mixed Perovskite powders (CsPbI3+CsPbBr3), as well as bilayers, trilayers, and quadrilayers.
The composition and crystalline structure of the materials under annealed and non-annealed conditions were analyzed primarily using XRD and UV-vis spectroscopy instruments. The data obtained from these analyses were used to evaluate the variations in film composition under different processes.
After careful assessment and comparison, we selected the single sequential thermal evaporation method with CsI/ mixed Perovskite (CsPbI3+CsPbBr3) to prepare the CsPbI3-xBrx thin films. This preparation method showed excellent performance in terms of simplicity and efficiency during the sequential thermal evaporation process. After annealing treatment, UV-vis spectroscopy and XRD analysis confirmed that the thin film′s composition and crystalline phase met the requirements for the desired black phase CsPbI3-xBrx.
Regarding electroluminescence, the device achieved its maximum brightness of 135.4nit at 2.74V, with CIE1931 color coordinates of (0.7239, 0.2732), corresponding to a near-red light wavelength of 648nm.
關鍵字(中) ★ 全無機混合鹵化物鈣鈦礦
★ 熱蒸鍍
★ 無機混合鹵化物鈣鈦礦紅色發光二極體
關鍵字(英) ★ Sequential Vacuum Deposition
★ All-Inorganic Hybrid Halide Perovskite
★ All-Inorganic Hybrid Halide Perovskite For Red Light Emitting Diode
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1-1前言 1
1-2鈣鈦礦材料的由來與結構 1
1-3有機-無機鈣鈦礦 2
1-4全無機鈣鈦礦發展 3
1-5鈣鈦礦的合成方式 6
1-5-1 配體輔助再沉積法(Ligand-assisted Reprecipitation, LARP) 6
1-5-2高溫熱注法(Hot-Injection Method, HI) 7
1-6鈣鈦礦薄膜製備方式 11
1-6-1旋轉塗佈法 11
1-6-2熱蒸鍍法 13
1-6-3原子層沉積法(Atomic layer deposition :ALD) 19
1-7鈣鈦礦主動層薄膜的結晶相 21
1-7-1 Goldschmidt公差因子t 21
1-7-2 退火的溫度 22
1-8電洞傳輸層(Hole Transport Layer) 23
1-8各種製備方式比較 24
1-9研究動機 25
第二章 實驗方法 26
2-1實驗用藥品與儀器 26
2-1-1實驗用藥品與基材 26
2-1-2實驗用儀器 26
2-2 實驗步驟 28
2-2-1 ITO基板清潔 28
2-2-3 順序熱蒸鍍製程 28
2-2-4 製程後熱退火 28
2-2-5 碳膠刮塗 29
2-2-6 LED 元件量測 29
2-3 實驗儀器分析介紹 31
2-3-1 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 31
2-3-2 X-射線繞射儀(X-ray Diffractometer, XRD) 31
2-3-3 紫外線∕可見光分光光譜儀(Ultraviolet -visible spectroscopy, UV-Vis) 31
2-3-4 光諧儀及積分球(Spectrometer & Integrating Sphere) 31
2-3-5 紫外光電子能譜儀(Ultraviolet Photoelectron Spectroscopy, UPS) 31
2-3-6 輝度計(Luminance Colorimeter) 32
2-3-7微示差掃描熱卡分析儀(Differential Scanning Calorimeters ,DSC) 32
三 章 結果與討論 33
3-1結晶相轉換溫度 33
3-2 熱蒸鍍CsPbI3-xBrx薄膜 34
3-2-1順序熱蒸鍍CsBr、PbI2製備CsPbI3-xBrx薄膜 35
3-2-2 順序熱蒸鍍CsPbI3與CsPbBr3製備CsPbI3-xBrx薄膜 38
3-2-3順序熱蒸鍍CsI、CsPbI3、CsI、CsPbBr3製備CsPbI3-xBrx薄膜 40
3-2-4混粉鈣鈦礦(CsPbI3+CsPbBr3) 45
3-2-5順序熱蒸鍍CsI、混粉鈣鈦礦(CsPbI3+CsPbBr3) 47
3-3 主動層UPS 分析 51
3-4 紅光LED 元件結構 53
3-5紅光LED 53
3-6各種熱蒸鍍製備方式比較 54
第四章結論 55
參考文獻 56
參考文獻 [1] T. Dai, Q. Cao, L. Yang, M. H. Aldamasy, M. Li, Q. Liang, H. Lu, Y. Dong, and Y. Yang, “Strategies for high-performance large-area perovskite solar cells toward commercialization,” Crystals, vol. 11, pp. 295, 2021.
[2] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” Journal of the american chemical society, vol. 131,pp. 6050-6051, 2009.
[3] M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, and D. Cahen, “Cesium enhances long-term stability of lead bromide perovskite-based solar cells,” The journal of physical chemistry letters, vol. 7, pp. 167-172, 2016.
[4] L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut,” Nano letters, vol. 15, pp. 3692-3696, 2015.
[5] E. Yassitepe, Z. Yang, O. Voznyy, Y. Kim, G. Walters, J. A. Castañeda, P. Kanjanaboos, M. Yuan, X. Gong, and F. Fan, “Amine‐free synthesis of cesium lead halide perovskite quantum dots for efficient light‐emitting diodes,” Advanced Functional Materials, vol. 26, pp. 8757-8763, 2016.
[6] A. Mohapatra, M. R. Kar, and S. Bhaumik, “Suppression of halide migration and improved stability in double-coated cesium lead halide perovskite nanocrystals for application in down-conversion white-light-emitting diodes,” Journal of Alloys and Compounds, vol. 927, pp. 166972, 2022.
[7] Z.-L. Tseng, Y.-S. Huang, Y.-L. Liu, T.-L. Wu, and Y.-J. Wei, “Tetraoctylammonium bromide-passivated CsPbI3− xBrx perovskite nanoparticles with improved stability for efficient red light-emitting diodes,” Journal of Alloys and Compounds, vol. 897, pp. 163182, 2022.
[8] R. Sánchez-Alarcón, J. Noguera-Gomez, V. Chirvony, H. P. Adl, P. P. Boix, G. Alarcón-Flores, J. Martínez-Pastor, and R. Abargues, “Spray-driven halide exchange in solid-state CsPbX 3 nanocrystal films,” Nanoscale, vol. 14, pp. 13214-13226, 2022.
[9] D. H. Kim, H. J. An, I. Y. Choi, and J.-M. Myoung, “High‐performance pure-red light‐emitting diodes based on CsPbBrxI3-x–multi-ligands–KBr composite films,” Chemical Engineering Journal, vol. 429, pp. 132375, 2022.
[10] M. T. Hoang, A. S. Pannu, Y. Yang, S. Madani, P. Shaw, P. Sonar, T. Tesfamichael, and H. Wang, “Surface treatment of inorganic CsPbI3 nanocrystals with guanidinium iodide for efficient perovskite light-emitting diodes with high brightness,” Nano-Micro Letters, vol. 14, , pp. 69, 2022.
[11] K. A. Huynh, T. Van Nguyen, S.-R. Bae, H. H. Do, Q. Van Le, H. W. Jang, S. H. Ahn, and S. Y. Kim, “Surface treatment of Mixed-Halide CsPb (BrxI1-x) 3 perovskite quantum dots for thermal stability enhancement,” Materials Research Bulletin, vol. 146, pp. 111622, 2022.
[12]Y. H. Kim, J. S. Kim, and T. W. Lee, “Strategies to improve luminescence efficiency of metal‐halide perovskites and light‐emitting diodes,” Advanced Materials, vol. 31,pp. 1804595, 2019.
[13] S.-R. Bae, D. Heo, and S. Kim, “Recent progress of perovskite devices fabricated using thermal evaporation method: Perspective and outlook,” Materials Today Advances, vol. 14, pp. 100232, 2022.
[14] Y. Doumbia, A. Bouich, B. M. Soucasse, and D. Soro, “Boosting the stability and growth of methylammonium lead bromide perovskites film doped with FA for solar cells,” Optical Materials, vol. 137, pp. 113563, 2023.
[15] V. Cimrová, M. Guesmi, S. Eom, Y. Kang, and D. Výprachtický, “Formamidinium Lead Iodide Perovskite Thin Films Formed by Two-Step Sequential Method: Solvent–Morphology Relationship,” Materials, vol. 16, pp. 1049, 2023.
[16] Y. Vaynzof, “The future of perovskite photovoltaics—thermal evaporation or solution processing?,” Advanced Energy Materials, vol. 10, pp. 2003073, 2020.
[17] V. O. Eze, G. R. Adams, L. Braga Carani, R. J. Simpson, and O. I. Okoli, “Enhanced inorganic CsPbIBr2 perovskite film for a sensitive and rapid response self-powered photodetector,” The Journal of Physical Chemistry C, vol. 124, pp. 20643-20653, 2020.
[18] V. O. Eze, L. B. Carani, H. Majumder, M. J. Uddin, and O. I. Okoli, “Inorganic cesium lead mixed halide based perovskite solar materials modified with functional silver iodide,” Scientific Reports, vol. 12, pp. 7794, 2022.
[19] M. Jiang, Z. Hu, L. K. Ono, and Y. Qi, “CsPbBr x I 3-x thin films with multiple ammonium ligands for low turn-on pure-red perovskite light-emitting diodes,” Nano Research, vol. 14, pp. 191-187, 2021.
[20] J. Li, R. Gao, F. Gao, J. Lei, H. Wang, X. Wu, J. Li, H. Liu, X. Hua, and S. F. Liu, “Fabrication of efficient CsPbBr3 perovskite solar cells by single-source thermal evaporation,” Journal of alloys and compounds, vol. 818, pp. 152903, 2020.
[21] R. Ji, Z. Zhang, C. Cho, Q. An, F. Paulus, M. Kroll, M. Löffler, F. Nehm, B. Rellinghaus, and K. Leo, “Thermally evaporated methylammonium-free perovskite solar cells,” Journal of Materials Chemistry C, vol. 8, pp. 7725-7733, 2020.
[22] Y.-J. Kang, and S.-I. Na, “Multi-site passivation-based antisolvent additive engineering with gradient distribution for superior triple cation PIN perovskite solar cells,” Nano Energy, vol. 97, pp. 107193, 2022.
[23] F. R. Montes, C. Rosiles-Perez, C. F. A. Ramos, H. Hu, J. L. S. Sánchez, and A. E. J. González, “Study of DMSO concentration on the optical and structural properties of perovskite CH3NH3PbI3 and its use in solar cells,” Journal of Solid State Chemistry, vol. 312, pp. 123158, 2022.
[24] H.-S. Kim, Y.-J. An, J. I. Kwak, H. J. Kim, H. S. Jung, and N.-G. Park, “Sustainable green process for environmentally viable perovskite solar cells,” ACS Energy Letters, vol. 7, pp. 1154-1177, 2022.
[25] K. B. Lohmann, S. G. Motti, R. D. Oliver, A. J. Ramadan, H. C. Sansom, Q. Yuan, K. A. Elmestekawy, J. B. Patel, J. M. Ball, and L. M. Herz, “Solvent-free method for defect reduction and improved performance of pin vapor-deposited perovskite solar cells,” ACS Energy Letters, vol. 7, pp. 1903-1911, 2022.
[26] A. Genco, F. Mariano, S. Carallo, V. L. Guerra, S. Gambino, D. Simeone, A. Listorti, S. Colella, G. Gigli, and M. Mazzeo, “Fully Vapor‐Deposited Heterostructured Light‐Emitting Diode Based on Organo‐Metal Halide Perovskite,” Advanced Electronic Materials, vol. 2, pp. 1500325, 2016.
[27] L. A. Frolova, D. V. Anokhin, A. A. Piryazev, S. Y. Luchkin, N. N. Dremova, K. J. Stevenson, and P. A. Troshin, “Highly efficient all-inorganic planar heterojunction perovskite solar cells produced by thermal coevaporation of CsI and PbI2,” The journal of physical chemistry letters, vol. 8, pp. 67-72, 2017.
[28] S. Dastidar, C. J. Hawley, A. D. Dillon, A. D. Gutierrez-Perez, J. E. Spanier, and A. T. Fafarman, “Quantitative phase-change thermodynamics and metastability of perovskite-phase cesium lead iodide,” The journal of physical chemistry letters, vol. 8, pp. 1278-1282, 2017.
[29] J. Li, L. Yang, Q. Guo, P. Du, L. Wang, X. Zhao, N. Liu, X. Yang, J. Luo, and J. Tang, “All-vacuum fabrication of yellow perovskite light-emitting diodes,” Science Bulletin, vol. 67, pp. 178-185, 2022.
[30] X. Jin, S. Song, Z. Liu, H. Wang, B. Wang, J. Guan, H. Zhang, and Q. Xu, “High‐Stability Patterned CsPbIxBr3− x Thin Films with Tunable Crystal Size Prepared by Solid‐Phase Reaction,” Advanced Optical Materials, vol. 9, pp. 2101175, 2021.
[31] Y. Liao, N. Tian, J. Wang, D. Yao, G. Zheng, B. Zhou, Y. Yang, and F. Long, “Performance Enhancement of Evaporated CsPbI2Br Perovskite Solar Cells with a CuSCN Hole Transport Layer via a Cesium Bromide Buffer Layer,” ACS Applied Energy Materials, vol. 5, pp. 9542-9548, 2022.
[32] A. Weiß, G. Popov, E. Atosuo, A. Vihervaara, P. Jalkanen, M. Vehkamäki, M. Leskelä, M. Ritala, and M. Kemell, “Atomic layer deposition of CsI and CsPbI3,” Chemistry of Materials, vol. 34, pp. 6087-6097, 2022.
[33] V. M. Goldschmidt, “Die gesetze der krystallochemie,” Naturwissenschaften, vol. 14,pp. 477-485, 1926.
[34] A. Ghorai, S. Mahato, S. K. Srivastava, and S. K. Ray, “Atomic Insights of Stable, Monodispersed CsPbI3− xBrx (x= 0, 1, 2, 3) Nanocrystals Synthesized by Modified Ligand Cell,” Advanced Functional Materials, vol. 32, pp. 2202087, 2022.
[35] P. Pansa-Ngat, K. Singh, B. Patel, C. Seriwattanachai, P. Kanjanaboos, and O. Voznyy, “Stereoelectronic Effect from B-Site Dopants Stabilizes Black Phase of CsPbI3,” Chemistry of Materials, vol. 35, pp. 271-279, 2023
[36] S. Mahato, A. Ghorai, S. K. Srivastava, M. Modak, S. Singh, and S. K. Ray, “Highly air‐stable single‐crystalline β‐CsPbI3 nanorods: a platform for inverted perovskite solar cells,” Advanced Energy Materials, vol. 10, pp. 2001305, 2020.
[37] J. A. Steele, H. Jin, I. Dovgaliuk, R. F. Berger, T. Braeckevelt, H. Yuan, C. Martin, E. Solano, K. Lejaeghere, and S. M. Rogge, “Thermal unequilibrium of strained black CsPbI3 thin films,” Science, vol. 365, pp. 679-684, 2019.
[38] M. I. Pintor Monroy, I. Goldberg, K. Elkhouly, E. Georgitzikis, L. Clinckemalie, G. Croes, N. Annavarapu, W. Qiu, E. Debroye, and Y. Kuang, “All-Evaporated, All-Inorganic CsPbI3 Perovskite-Based Devices for Broad-Band Photodetector and Solar Cell Applications,” ACS Applied Electronic Materials, vol. 3, pp. 3023-3033, 2021.
[39] G. K. Grandhi, N. S. M. Viswanath, J. H. In, H. B. Cho, and W. B. Im, "Robust, Brighter Red Emission from CsPbI3 Perovskite Nanocrystals via Endotaxial Protection," (in English), J. Phys. Chem. Lett., Article vol. 11, pp. 3699-3704, 2020.
[40]黃天賜,「單元熱蒸鍍全無機鈣鈦礦薄膜與發光二極體之研究」,國立中央大學,碩士論文,中華民國110年。
[41]曲芸萱,「雙源順序熱蒸鍍全無機混合鹵化物鈣鈦礦藍色發光二極體之研究」, 國立中央大學,碩士論文,中華民國111年。
[42] B. Han, Q. Shan, F. Zhang, J. Song, and H. Zeng, "Giant efficiency and color purity enhancement in multicolor inorganic perovskite light-emitting diodes via heating-assisted vacuum deposition," Journal of Semiconductors, vol. 41,pp. 052205, 2020.
[43] S. Guo, H.-F. Liu, and Y.-F. Liu, "Efficient all-inorganic red perovskite light-emitting diodes with dual-interface-modified perovskites by vapor deposition," Optics Letters, vol. 47 , pp. 2694-2697, 2022.
指導教授 詹佳樺 審核日期 2023-8-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明