博碩士論文 110328014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.236.142.143
姓名 陳育澤(Yu-Ze Chen)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 奈米流體親水液滴的蒸發沉積圖案:溫度與表面活性劑的作用
相關論文
★ 溫度調變對二元合金固液介面形態穩定的影響★ 濃度調變對二元合金固液介面形態穩定的影響
★ 圓錐平板型生物反應器週期性流場研究★ 圓錐平板型生物反應器二次週期流場研究
★ 圓錐平板型生物反應器脈動式流場研究★ 濃度調變對單向固化形態穩定的影響
★ 圓錐平板型生物反應器脈動式二次流場研究★ 模擬注流式生物反應器之流場及細胞生長
★ 週期式圓錐平板裝置之設計與量測★ 模擬注流式生物反應器之細胞培養研究
★ 軟骨細胞在組織工程支架之培養研究★ 細胞在組織工程支架之生長與遷移
★ 冷電漿沉積類鑽碳膜之製程模擬分析★ 格狀自動機探討組織工程細胞體外培養研究
★ 細胞在注流式生物反應器之生長研究★ 週期式圓錐平板裝置之流場分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-11-9以後開放)
摘要(中) 液滴蒸發的咖啡環現象不只在日常生活中出現,對於噴墨列印、塗層技術等應用中,咖啡環現象的出現會降低產品品質或是性能等因素。因此,本研究在不同溫度的基板上,以及在懸浮溶液中添加不同濃度的表面活性劑(sodium dodecyl sulfate, SDS)兩種抑制咖啡環效應的方法,以達到獲得均勻沉積圖案的目的。在液滴蒸發的過程中,主要受到毛細流、表面張力梯度、溫度梯度引發的馬倫哥尼流以及液滴界面下降四種因素的影響,這些因素都會對液滴沉積的結果產生影響。
本文實驗在三種基板的溫度(30˚C、50˚C和70˚C)以及四種SDS濃度(0 wt %、0.05 wt %、0.50 wt %和1.00 wt %)下進行實驗。實驗結果顯示,只有在基板溫度為30˚C且SDS濃度為低濃度(0 wt %和0.05 wt %)時,沉積圖案為咖啡環。而提高SDS濃度(0.50 wt %和1.00 wt %)或是提高基板溫度(50˚C、70˚C),實驗結果皆顯示大多數的粒子沉積於液滴內部或是中心區域,呈現了抑制咖啡環現象。



關鍵詞:咖啡環現象、噴墨列印、表面活性劑
摘要(英) The coffee ring phenomenon observed during the evaporation of droplets occurs not only in everyday life but also in applications such as ink-jet printing and coating technologies. The coffee ring effect in these applications can negatively affect product quality and performance, among other factors. In this study, we employed two methods to suppress the coffee ring: varying the substrate temperature and adding different concentrations of surfactant (sodium dodecyl sulfate, SDS). The aim is to achieve a uniform deposition pattern. During the droplet evaporation process, four major factors influenced the droplet: capillary flow, surface tension gradients, Marangoni flow induced by temperature gradients, and the descent of the droplet interface. All of these factors can affect the final droplet deposition.
This study conducted experiments at three different temperatures (30˚C, 50˚C, and 70˚C) and with four different SDS concentrations (0 wt %, 0.05 wt %, 0.50 wt %, and 1.00 wt %). The experimental results reveal that coffee ring deposition pattern only occurs when the substrate temperature is at 30˚C and the SDS concentration is low (0 wt % and 0.05 wt %). Increasing the SDS concentration or raising the substrate temperature leads to most particles being depositing within the droplet or in its central region, demonstrating the suppression of the coffee ring phenomenon.



Keywords: coffee-ring phenomenon, inkjet printing, surfactant
關鍵字(中) ★ 咖啡環現象
★ 噴墨列印
★ 表面活性劑
關鍵字(英) ★ coffee-ring phenomenon
★ inkjet printing
★ surfactant
論文目次 摘要 ⅰ
Abstract ⅱ
目錄 ⅲ
圖目錄 ⅵ
表目錄 ⅹ
第一章 緒論 1
1-1 研究動機 1
1-2 文獻回顧 3
1-2-1 改變粒子形狀與大小 8
1-2-2 溶質的影響 9
1-2-3 溫度效應 13
1-3 研究目的 14
第二章 實驗系統 15
2-1 實驗裝置 15
2-1-1 注射系統 16
2-1-2 溫控系統 16
2-1-3 環境控制系統 17
2-1-4 影像系統 17
2-2 溶液調配 17
2-3 實驗條件設置 18
2-4 數據量測 19
第三章 結果與討論 21
3-1 基板溫度30˚C 21
3-2 基板溫度50˚C 31
3-3 基板溫度70˚C 42
3-4 沉積圖案的表面均勻度 52
3-5 花瓣圖案的產生與消失 54
3-5-1 SDS濃度為0 wt % ~ 0.35 wt % 55
3-5-2 SDS濃度為0.50 wt % ~ 1.00 wt % 59
3-5-3 花瓣圖案的表面均勻度 62
3-5-4 液滴接觸角與直徑的變化 63
第四章 結論與未來展望 66
4-1 結論 66
4-2 未來展望 66
參考文獻 68
附錄 72
參考文獻 1.Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G., Nagel, S. R., & Witten, T. A. (1997).Capillary flow as the cause of ring stains from dried liquid drops. Nature, 389(6653), 827-829.
2.Sirringhaus, H., Kawase, T. A. K. E. O., Friend, R. H., Shimoda, T., Inbasekaran, M., Wu, W., & Woo, E. P. (2000). High-resolution inkjet printing of all-polymer transistor circuits. Science, 290(5499), 2123-2126.
3.Singh, M., Haverinen, H. M., Dhagat, P., & Jabbour, G. E. (2010). Inkjet printing—process and its applications. Advanced materials, 22(6), 673-685.
4.Maleki, H., & Bertola, V. (2020). Recent advances and prospects of inkjet printing in heterogeneous catalysis. Catalysis Science & Technology, 10(10), 3140-3159.
5.Dugas, V., Broutin, J., & Souteyrand, E. (2005). Droplet evaporation study applied to DNA chip manufacturing. Langmuir, 21(20), 9130-9136.
6.Wang, D., Liu, S., Trummer, B. J., Deng, C., & Wang, A. (2002). Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells. Nature biotechnology, 20(3), 275-281.
7.De Gans, B. J., Duineveld, P. C., & Schubert, U. S. (2004). Inkjet printing of polymers: state of the art and future developments. Advanced materials, 16(3), 203-213.
8.Ipekci, H. H., Gozutok, Z., Celik, N., Onses, M. S., & Uzunoglu, A. (2021). Ink-jet printing of particle-free silver inks on fabrics with a superhydrophobic protection layer for fabrication of robust electrochemical sensors. Microchemical Journal, 164, 106038.
9.Kawase, T., Sirringhaus, H., Friend, R. H., & Shimoda, T. (2001). Inkjet printed via‐hole interconnections and resistors for all‐polymer transistor circuits. Advanced Materials, 13(21), 1601-1605.
10.Layani, M., Gruchko, M., Milo, O., Balberg, I., Azulay, D., & Magdassi, S. (2009). Transparent conductive coatings by printing coffee ring arrays obtained at room temperature. ACS nano, 3(11), 3537-3542.
11.Trantum, J. R., Wright, D. W., & Haselton, F. R. (2012). Biomarker-mediated disruption of coffee-ring formation as a low resource diagnostic indicator. Langmuir, 28(4), 2187-2193.
12.Wang, F. C., & Wu, H. A. (2013). Pinning and depinning mechanism of the contact line during evaporation of nano-droplets sessile on textured surfaces. Soft Matter, 9(24), 5703-5709.
13.Zhang, X., Wang, J., Bao, L., Dietrich, E., van der Veen, R. C., Peng, S., ... & Lohse, D. (2015). Mixed mode of dissolving immersed nanodroplets at a solid–water interface. Soft Matter, 11(10), 1889-1900.
14.Shin, D. H., Lee, S. H., Jung, J. Y., & Yoo, J. Y. (2009). Evaporating characteristics of sessile droplet on hydrophobic and hydrophilic surfaces. Microelectronic Engineering, 86(4-6), 1350-1353.
15.He, X., Cheng, J., Collier, C. P., Srijanto, B. R., & Briggs, D. P. (2020). Evaporation of squeezed water droplets between two parallel hydrophobic/superhydrophobic surfaces. Journal of colloid and interface science, 576, 127-138.
16.Majumder, M., Rendall, C. S., Eukel, J. A., Wang, J. Y., Behabtu, N., Pint, C. L., ... & Pasquali, M. (2012). Overcoming the “coffee-stain” effect by compositional Marangoni-flow-assisted drop-drying. The Journal of Physical Chemistry B, 116(22), 6536-6542.
17.Yunker, P. J., Still, T., Lohr, M. A., & Yodh, A. G. (2011). Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature, 476(7360), 308-311.
18.Bansal, L., Seth, P., Murugappan, B., & Basu, S. (2018). Suppression of coffee ring:(Particle) size matters. Applied Physics Letters, 112(21).
19.AvCarb:〈燃料電池氣體擴散層設計與功能〉,2020年5月,取自https://www.avcarb.com/wp-content/uploads/2020/06/GDL-Design-Function-Newsletter-Chinese-2.pdf
20.Park, J., & Moon, J. (2006). Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing. Langmuir, 22(8), 3506-3513.
21.Kim, D., Jeong, S., Park, B. K., & Moon, J. (2006). Direct writing of silver conductive patterns: Improvement of film morphology and conductance by controlling solvent compositions. Applied physics letters, 89(26).
22.Still, T., Yunker, P. J., & Yodh, A. G. (2012). Surfactant-induced Marangoni eddies alter the coffee-rings of evaporating colloidal drops. Langmuir, 28(11), 4984-4988.
23.Li, Y., Lv, C., Li, Z., Quéré, D., & Zheng, Q. (2015). From coffee rings to coffee eyes. Soft Matter, 11(23), 4669-4673.
24.Li, Y., Yang, Q., Li, M., & Song, Y. (2016). Rate-dependent interface capture beyond the coffee-ring effect. Scientific reports, 6(1), 24628.
25.Patil, N. D., Bange, P. G., Bhardwaj, R., & Sharma, A. (2016). Effects of substrate heating and wettability on evaporation dynamics and deposition patterns for a sessile water droplet containing colloidal particles. Langmuir, 32(45), 11958-11972.
26.Caputo, F., Vogel, R., Savage, J., Vella, G., Law, A., Della Camera, G., ... & Calzolai, L. (2021). Measuring particle size distribution and mass concentration of nanoplastics and microplastics: addressing some analytical challenges in the sub-micron size range. Journal of Colloid and Interface Science, 588, 401-417.
27.Lamour, G., Hamraoui, A., Buvailo, A., Xing, Y., Keuleyan, S., Prakash, V., ... & Borguet, E. (2010). Contact angle measurements using a simplified experimental setup. Journal of chemical education, 87(12), 1403-1407.
28.Parsa, M., Harmand, S., Sefiane, K., Bigerelle, M., & Deltombe, R. (2015). Effect of substrate temperature on pattern formation of nanoparticles from volatile drops. Langmuir, 31(11), 3354-3367.
29.Lama, H., Basavaraj, M. G., & Satapathy, D. K. (2017). Tailoring crack morphology in coffee-ring deposits via substrate heating. Soft Matter, 13(32), 5445-5452.
30.Weon, B. M., & Je, J. H. (2013). Fingering inside the coffee ring. Physical Review E, 87(1), 013003.
指導教授 鍾志昂(Chih-Ang Chung) 審核日期 2023-11-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明