博碩士論文 110328020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:62 、訪客IP:18.225.255.208
姓名 郭時翰(Shih-Han Kuo)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 FR-4玻璃纖維基板之超快雷射切割特性研究
(Study on the Ultrafast Laser Dicing Characteristics of FR-4 Glass Fiber Substrate)
相關論文
★ 碳化矽光輔助化學處理之表面特性探討★ 超快雷射薄石英晶圓微鑽孔研究
★ 藍寶石薄基板圓通孔和啞鈴形通孔之超快脈 衝雷射微鑽孔研究★ 新型光學式自動聚焦顯微鏡的設計與其性能分析
★ 以田口法作微型動壓軸承最佳化設計與性能評價★ 開發以 ANSYS-Fluent 為架構之數值模擬法探 討行星式 MOCVD 反應腔體內之三維氣體流場
★ 使用擴散片降低雷射幾何擾動方法之最佳化設計與實驗驗證★ 雷射還原石墨烯之場發射特性探討
★ 崁入式網印金屬網格電極製作於有機發光二極體之應用★ 三氧化鉬晶體薄膜之大氣環境製備技術開發及特性探討
★ 雷射直寫技術應用於金屬網格軟性透明電極製作★ AISI-H13工具鋼之雷射衝擊強化處理與衝擊壓力檢測
★ 多功能崁入式金屬網格透明電極技術開發★ 結合雷射直寫與無電鍍技術應用於嵌入式金屬網格透明電極製作
★ 複數光源二步驟照射法應用於無鹼玻璃之無裂痕雷射加工★ 雷射直寫草酸銀複合墨水製作金屬銀網格透明電極
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-1-25以後開放)
摘要(中) FR-4即玻璃纖維增強電子級環氧樹脂,具良好電氣絕緣性能、高機械強度、高耐熱性、高化學穩定度以及製造成本低的優勢,使它成為印刷電路板(PCB)基板的重要材料。而在FR-4分板切割方面,常用的技術有V-cut切割、高壓水射流切割與鑽石輪刀切割等。一般而言,輪刀切割法具有切割快速與良好的切面品質,一直是FR-4基板的主要分割技術。然而,隨者更輕薄短小、更高功能元件的市場需求,多層、更高密度的電路製作的需求也益發重要,面對線與線距縮小至數十微米或更小時,傳統上使用機械式的鑽石輪刀切割方式已逐漸呈現出極限性。
使用雷射切割具有: 精確、切口小、適用於複雜的形狀、無機械接觸可避免切割力造成損傷等優勢,被認為是有潛力的技術。然而,玻璃纖維和環氧樹脂的混合物對於雷射切割也具有一定的挑戰,如: 玻璃纖維在加工過程容易產生碎屑、毛刺和裂紋等問題,這些碎屑和毛刺會影響到基板的微精度和可靠性,此外環氧樹脂在雷射切割過程中容易因高熱效應,產生碳化層,碳化層會影響基板的電阻和介電常數,從而影響基板的電性能和信號傳輸性能,因此需要後處理以去除殘留的碳化物。為降低一般雷射切割的碎屑、毛刺與高熱效應問題,本研究使用超快雷射切割FR-4基板,期以超短脈衝期的高瞬間功率與低熱效應,提升切割品質。
本研究以飛秒雷射對厚度為0.2 mm與0.8 mm的FR-4基板分別在大氣與水中進行切割,比較切面品質與切割速率。結果顯示,相較於在大氣中切割,在水中切割,可獲得較少的碎屑殘留與較低的熱效應。在參數: 功率14.99 W、頻率500 kHz、掃描速度500 mm/s、水位高度2118 μm與掃描1250次下,可以得到近乎機械切割的高品質橫截面。此外,本研究亦對圖案化切割以及加工參數進行討論。
摘要(英) FR-4, or glass fiber-reinforced electronic-grade epoxy resin, is a crucial material for printed circuit boards (PCBs) due to its excellent electrical insulation, high mechanical strength, elevated heat resistance, chemical stability, and cost-effectiveness. In the context of FR-4 substrate cutting, commonly employed techniques include V-cutting, high-pressure water jet cutting, and diamond wheel cutting. Generally, diamond wheel cutting has been the primary method for FR-4 substrate separation, offering fast cutting and good surface quality. However, with the market demand for smaller, lighter, and more high-functional components, the need for multi-layer and higher density circuit fabrication has become increasingly vital. As line widths and spacings shrink to tens of micrometers or smaller, traditional mechanical diamond wheel cutting methods are showing limitations.
Laser cutting, with advantages such as precision, small kerf, suitability for complex shapes, and no mechanical contact to prevent cutting force-induced damage, is considered a promising technology. However, the mixture of glass fiber and epoxy resin presents challenges for laser cutting. Glass fiber can generate debris, burrs, and cracks during processing, affecting the substrate′s micro-precision and reliability. Additionally, epoxy resin is prone to forming a carbonized layer due to the high thermal effects of laser cutting, influencing the substrate′s resistance and dielectric constant, thereby impacting electrical and signal transmission performance. Post-processing is necessary to remove residual carbonization.
To address issues like debris, burrs, and high thermal effects associated with conventional laser cutting, this study employs ultrafast laser cutting on FR-4 substrates. The aim is to enhance cutting quality by utilizing high instantaneous power and low thermal effects during ultra-short pulse durations. Using a femtosecond laser, the study compares the cutting quality and speed of 0.2 mm and 0.8 mm thick FR-4 substrates cut in both atmospheric and underwater conditions. Results indicate that cutting underwater yields fewer residual debris and lower thermal effects compared to cutting in the atmosphere. Under the parameter set: power 14.99 W, frequency 500 kHz, scan speed 500 mm/s, water level height 2118 μm, and 1250 scans, high-quality cross-sections comparable to mechanical cutting can be achieved. The study also discusses patterned cutting and processing parameters.
關鍵字(中) ★ 印刷電路板(PCB)
★ FR-4基板
★ 雷射切割
★ 超快雷射
★ 液體輔助雷射切割
關鍵字(英) ★ Printed Circuit Board (PCB)
★ FR-4 Substrate
★ Laser Cutting
★ Ultrafast Laser
★ Liquid Assisted Laser Cutting
論文目次 目錄
摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 xii
符號說明 xiii
一、 前言與目的 1
1-1 研究背景與動機 1
1-2 Flip Chip Ball Grid Array (FCBGA)演變 2
1-3 FCBGA Process Flow 4
二、 基礎理論與文獻回顧 7
2-1 材料基本性質 7
2-2 雷射加工原理 9
2-3 雷射切割方法 10
2-4 液體輔助切割 15
2-5 傳承與創新 19
三、 實驗設備與方法 20
3-1 實驗設備與分析儀器 20
3-2 實驗流程 21
3-3 影響切割品質的雷射參數 22
3-4 FR-4雷射切割品質量化 24
四、 結果與討論 27
4-1 薄基板水中與空氣中切割比較 27
4-2 圖案化 30
4-3 厚基板水中切割 32
4-4 雷射切割參數的探討 34
4-5 切割槽寬度 37
4-6 機械切割與水中切割的比較 40
4-7 面算術平均高度(Sa)差異 41
4-8 SEM以及EDX分析 42
五、 結論 47
六、 參考文獻 48
碩士論文口試教授問題集 50
參考文獻 六、 參考文獻
[1] A. Solati, M. Hamedi, and M. Safarabadi, "Comprehensive investigation of surface quality and mechanical properties in CO 2 laser drilling of GFRP composites," The International Journal of Advanced Manufacturing Technology, vol. 102, pp. 791-808, 2019.
[2] "先進封裝技術再進化:超高密度銅─銅 Hybrid Bonding 為何值得期待?." https://technews.tw/2022/07/29/ma-tek-package-design-hybrid-bonding/ (accessed 7/29, 2022).
[3] "Technika cięcia laserowego w procesie separacji płytek drukowanych." https://elektronikab2b.pl/technika/52524-technika-ciecia-laserowego-w-procesie-separacji-plytek-drukowanych (accessed 7/13, 2020).
[4] P. Ciszewski and M. Sochacki, "Processing of printed circuit boards using a 532 nm green laser," Opto-Electronics Review, vol. 28, 2020.
[5] X. Wang, Z. Li, T. Chen, B. Lok, and D. Low, "355 nm DPSS UV laser cutting of FR4 and BT/epoxy-based PCB substrates," Optics and Lasers in Engineering, vol. 46, no. 5, pp. 404-409, 2008.
[6] Y. Rong et al., "Precision cutting of epoxy resin board (ERB) by ultraviolet (UV) nanosecond laser ablation with consideration of hazardous gas protection," Optik, vol. 241, p. 167154, 2021.
[7] T. T. P. Nguyen, R. Tanabe, and Y. Ito, "Effects of an absorptive coating on the dynamics of underwater laser-induced shock process," Applied Physics A, vol. 116, pp. 1109-1117, 2014.
[8] J. Lu et al., "Mechanisms of laser drilling of metal plates underwater," Journal of applied physics, vol. 95, no. 8, pp. 3890-3894, 2004.
[9] A. Kruusing, "Underwater and water-assisted laser processing: Part 2—Etching, cutting and rarely used methods," Optics and Lasers in Engineering, vol. 41, no. 2, pp. 329-352, 2004.
[10] N. Ren, K. Xia, H. Yang, F. Gao, and S. Song, "Water-assisted femtosecond laser drilling of alumina ceramics," Ceramics International, vol. 47, no. 8, pp. 11465-11473, 2021.
[11] S. Butkus et al., "Rapid microfabrication of transparent materials using filamented femtosecond laser pulses," Applied Physics A, vol. 114, pp. 81-90, 2014.
[12] D. Sun, F. Han, and W. Ying, "The experimental investigation of water jet–guided laser cutting of CFRP," The International Journal of Advanced Manufacturing Technology, vol. 102, pp. 719-729, 2019.
[13] G. Schnell, U. Duenow, and H. Seitz, "Effect of laser pulse overlap and scanning line overlap on femtosecond laser-structured Ti6Al4V surfaces," Materials, vol. 13, no. 4, p. 969, 2020.
[14] A. B. Khoshaim, A. H. Elsheikh, E. B. Moustafa, M. Basha, and E. A. Showaib, "Experimental investigation on laser cutting of PMMA sheets: Effects of process factors on kerf characteristics," journal of materials research and technology, vol. 11, pp. 235-246, 2021.
[15] S. Butkus, E. Gaižauskas, L. Mačernytė, V. Jukna, D. Paipulas, and V. Sirutkaitis, "Femtosecond beam transformation effects in water, enabling increased throughput micromachining in transparent materials," Applied Sciences, vol. 9, no. 12, p. 2405, 2019.
指導教授 何正榮(Jeng-Rong Ho) 審核日期 2024-1-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明