博碩士論文 110329001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:18.216.121.55
姓名 晁維廷(Wei-Ting Chao)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 利用等效差分時域(FDTD)模擬分析自組裝鎵奈米顆粒嵌入可拉伸彈性材料光學性質探討
(Finite-difference time-domain (FDTD) analysis of the optical properties of self-assembled plasmonic structures with gallium nanoparticles embedded in stretchable elastomers)
相關論文
★ 開發鎵奈米粒子沉浸於可拉伸聚合物之可調式電漿子結構★ 無鉛銲料錫銀銦與銅基板的界面反應
★ 高度反射性銀/鑭雙層p型氮化鎵歐姆接觸之性質研究★ 以電子迴旋共振化學氣相沉積氫化非晶矽薄膜之熱處理結晶化研究
★ 研究奈晶矽與非晶矽之多層結構經熱退火處理後之性質及其在PIN太陽能電池吸收層中之應用★ 利用陽極氧化鋁模板製備銀奈米結構陣列於玻璃基板
★ 利用電子迴旋共振化學氣相沉積法沉積氫化非晶矽薄膜探討其應力與結晶行為★ 高反射低電阻銀鑭合金P型氮化鎵歐姆接觸之研究
★ 陽極氧化鋁模板製備銀奈米粒子陣列及其表面增強拉曼散射效應之應用★ 製備磷摻雜奈米矽晶氧化矽薄膜及其於太陽能電池之應用
★ 陽極氧化鋁模板製備銀奈米粒子陣列及其光學性質★ 以電流控制方式快速製備孔洞間距400至500奈米之陽極氧化鋁模板
★ 利用濕式氧化法製備氧化矽薄膜應用於矽晶太陽能電池表面鈍化技術之研究★ 磷摻雜矽奈米晶粒嵌入於氮化矽基材之材料成長與特性分析
★ 利用電子迴旋共振化學氣相沉積法製備多層SiOxNy:H/SiCxNy:H抗反射薄膜及其於矽基太陽能電池之應用★ 利用新穎方法製作鋁背表面電場應用於結晶矽太陽能電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 先前本實驗室在適當的製程參數下,利用真空熱蒸鍍機(Thermal coater),使鎵金屬蒸鍍並沉浸於固化交聯後之聚二甲基矽氧烷 (Polydimethylsiloxane, PDMS)之可拉伸式高分子。鎵金屬奈米顆粒在熱蒸鍍時會沉浸於PDMS,且根據不同的製程條件下,所形成之自組裝鎵奈米結構也會產生變化,本實驗中我們運用掃描式電子顯微鏡 (SEM )、穿透式電子顯微鏡 ( TEM ) 觀察此自組裝所形成奈米電漿子結構的表面輪廓、橫截面形貌及使用紫外線/可見光之光譜儀進行量測獲得反射之LSPR 之光譜訊號,並藉由時域有限差分法( FDTD ) 之模擬軟體進行架構及模擬計算分析在不同製程參數下因PDMS內部的自組裝鎵奈米結構隨著奈米顆粒尺寸及層數不同使LSPR特徵訊號產生變化,並得知當蒸鍍厚度增加時,自組裝鎵奈米單層及多層結構之LSPR特徵波長皆產生紅移,並且在多層結構下,隨著層數的增加因鎵奈米粒子層間之耦合效應使其陸續產生多個LSPR特徵波長並持續紅移,以及利用FDTD模擬機械式二維拉伸時多層鎵奈米結構的變化,可得出在二維拉伸時因橫向耦合效應( Transverse coupling )增強及縱向( Longitudinal coupling )耦合效應減弱,最終可使多層結構在二維拉伸時之LSPR特徵波長產生大量 (約300 nm )藍移與實驗值趨勢一致,再透過CIE 1931 color space 觀察在其可逆性動態電漿子光學色彩變化最終其可產生由黃色→黃綠色→青藍色→天空藍→藍紫色→淡洋紅色之變化。
摘要(英) In our previous experiments, we used a vacuum thermal coater to deposit gallium metal into stretchable polydimethylsiloxane (PDMS) under specific manufacturing conditions. This resulted in self-assembled gallium nanostructures within the PDMS. We studied these structures using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to examine their surface profiles and cross-sectional morphology. We also measured their reflected optical spectrum signals, particularly related to localized surface plasmon resonance (LSPR), using UV/visible spectrophotometry. Through simulations using finite-difference time-domain (FDTD) software, we analyzed how changes in the size and number of gallium nanoparticles within the PDMS, under different manufacturing conditions, influenced the LSPR signals. We found that increasing the deposition thickness led to a redshift in the LSPR wavelength for both single-layer and multi-layer gallium structures. In multi-layer structures, the number of layers caused sequential redshifts due to interactions between the gallium nanoparticle layers. Additionally, mechanical stretching of multi-layer gallium structures led to a significant blueshift of about 300 nm, aligning with experimental findings. Ultimately, this work resulted in dynamic color changes from yellow to yellow-green, cyan-blue, sky blue, blue-purple, and light magenta, as observed through the CIE 1931 color space.
關鍵字(中) ★ 時域有限差分法
★ 表面電漿子共振
★ 機械式調控電漿子色彩
★ 鎵奈米粒子
★ 奈米電漿子結構
關鍵字(英) ★ ocal surface plasmon resonance, dynamic tuning,gallium nanoparticles
★ polydimethylsiloxane (PDMS)
★ plasmonic nanostructure
★ finite-difference time-domain (FDTD)
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1-1 前言 ix
1-2 研究動機……………………………………………………………………………... 2
第二章 文獻回顧 3
2-1 電漿子光學 3
2-1-1電漿子光學的發展及其應用 3
2-1-2局域性表面電漿子共振 4
2-1-3影響電漿子共振的因素 11
2-1-4橫向及縱向耦合效應對電漿子共振影響 12
2-2 鎵金屬性質及其應用 14
2-2-1鎵金屬的特性 14
2-2-2鎵金屬電漿子光學性質與應用 15
2-3 電漿子結構光學色彩 20
2-3-1靜態電漿子色彩生成 20
2-3-2動態可逆電漿子色彩調控方式 23
第三章 研究方法 28
3-1 實驗材料與設備 28
3-2 實驗步驟 29
3-3 時域有限差分法(FDTD)模擬之架構 30

第四章 研究結果與討論 28
4-1 嵌入式自組裝鎵奈米複合材料結構&光學性質探討及FDTD光學模擬分析 31
4-1-1 不同鎵金屬蒸鍍速率及厚度對自組裝鎵奈米結構的影響 31
4-1-2 自組裝單層鎵奈米結構下鎵奈米粒子結構之光學性質 34
4-1-3 自組裝多層奈米結構下鎵奈米粒子結構之光學性質 38
4-2 二維拉伸時利用FDTD模擬分析嵌入式自組裝鎵奈米複合材料之結構變化及CIE光學色彩分析....................................................................................................42
4-2-1 二維拉伸時自組裝單層及多層鎵奈米結構之光學性質影響 42
4-2-2 不同鎵奈米結構之光學色彩生成及動態拉伸時光學色彩變化 48
第五章 結論 51
參考文獻 53
參考文獻 1. Wood, R. W. (1902), Proc. Phys. Soc. London 18(1), 269–275.。
2. Fano, U. (1941).Journal of the Optical Society of America, 31(3), 213.
3. Hessel, A.,& Oliner, A. A.(1965). Applied Optics,4(10),1275..
4. Kretschmann, E., & Raether, H. (1968). Naturforschung A,23(12).
5. Otto, A.(1968). Zeitschrift Für Physik A ,216(4), 398–410..
6. Sciau,P. (2012).The Delivery of Nanoparticles.Ch25 (pp.525-540)
7. Pérez-Villar, S.,et al. (2008). Journal of Non-Crystalline Solids, 354(17), 1833–1844.
8. Angelini,I., et al. (2004). Journal of Archaeological Science, 31(8), 1175–1184.
9. Freestone, I., Meeks, N., Sax, M., & Higgitt, C. (2007). Gold Bulletin, 40(4),270–277.
10. Ebbesen, T. W.,et al. (1998). Nature, 391(6668), 667–669.
11. Tan, W.-C., Preist, T. W., Sambles, J. R., & Wanstall, N. P. (1999).Physical Review B, 59(19), 12661–12666.
12. Porto, J. A., García-Vidal, F. J., & Pendry, J. B. (1999). Physical Review Letters, 83(14), 2845–2848.
13. Martín-Moreno, L., García-Vidal, F. J., Lezec, H. J., Pellerin, K. M., Thio, T., Pendry, J. B., & Ebbesen, T. W. (2001).Physical Review Letters, 86(6), 1114–1117.
14. Garcia-Vidal, F. J., Martin-Moreno, L., Ebbesen, T. W., & Kuipers, L. (2010). Reviews of Modern Physics, 82(1), 729–787.
15. Jana, J., Ganguly, M., & Pal, T. (2016).RSC Advances, 6(89), 86174–86211.
16. Mie, G. (1908). Annalen Der Physik, 330(3), 377–445
17. Hong, Y.,et al. (2012). Journal of Nanomaterials, 2012, 1–13.
18. Link, S.,& El-Sayed, M. A. (1999). The Journal of Physical Chemistry B, 103(40), 8410–8426.
19. Lee, K.-C., Lin, S.-J., Lin, C.-H., Tsai, C.-S., & Lu, Y.-J. (2008). Surface and Coatings Technology, 202(22-23), 5339–5342.
20. Shafiqa, A. R., Abdul Aziz, A., & Mehrdel, B. (2018).Journal of Physics: Conference Series, 1083 (1),, 012040.
21. Zeman, E. J., & Schatz, G. C. (1987). The Journal of Physical Chemistry, 91(3), 634–643.
22. Peiris, S., et al. (2016).Catalysis Science & Technology, 6(2), 320–338.
23. Draine, B.T., & Flatau, P. J. (1994). Journal of the Optical Society of America A, 11(4), 1491.
24. Petryayeva, E., & Krull, U. J. (2011). Analytica Chimica Acta, 706(1), 8–24.
25. Le Ru, E. C.,& Etchegoin, P. G. (2012). Annual Review of Physical Chemistry, 63(1), 65–87.
26. Gwo, S.,Chen, H.-Y., Lin, M.-H., Sun, L., & Li, X. (2016). Chemical Society Reviews, 45(20), 5672–5716.
27. Zhong, Z., Patskovskyy, S., Bouvrette, P., Luong, J. H. T., & Gedanken, A. (2004). The Journal of Physical Chemistry B, 108(13), 4046–4052.
28. Rechberger, W., Hohenau, A., Leitner, A., Krenn, J. R., Lamprecht, B., & Aussenegg, F. R. (2003).Optics Communications, 220(1-3), 137–141.
29. Jain, P. K., Eustis, S., & El-Sayed, M. A. (2006). The Journal of Physical Chemistry B, 110(37), 18243–18253.
30. Spells, K. E. (1936). Proceedings of the Physical Society, 48(2), 299–311.
31. Züger, O., & Dürig, U. (1992). Physical Review B, 46(11), 7319–7321
32. Yu, H.-S., & Liao, W.-T. (2011).Encyclopedia of Environmental Health, 829–833.
33. Wang, C., Wang, C., Huang, Z., & Xu, S. (2018). Advanced Materials, 1801368.
34. Dickey, M. D. (2017).Advanced Materials, 29(27), 1606425.
35. Sanz, J. M., Ortiz, D., Alcaraz de la Osa, R., Saiz, J. M., González, F., Brown, A. S.,Moreno, F. (2013). The Journal of Physical Chemistry C, 117(38), 19606–19615.
36. Michal Horák, Vojtěch Čalkovský, Jindřich Mach, Vlastimil Křápek, and Tomáš Šikola The Journal of Physical Chemistry Letters (2023) 14 (8), 2012-2019
37. Gutiérrez, Y., Losurdo, M., García‐Fernández, P.,Sainz de la Maza, M., González, F., Brown, A. S.,Moreno, F. (2019). Advanced Optical Materials, 1900307.
38. Gutiérrez, Y., García-Fernández, P., Junquera, J., Brown, A. S., Moreno, F., & Losurdo, M. (2020). Nanophotonics, 9(14), 4233–4252.
39. Cheng, L., Huang, L., Li, X., Wu, J., Zhang, Y., Wang, J.,Cai, Y. (2015).Journal of Physical Chemistry C, 150611093634002.
40. Yang Yang, John M. Callahan, Tong-Ho Kim, April S. Brown, and Henry O. Everitt (2013). Nano Letters 13 (6), 2837-2841.
41. Cai, W., Chettiar, U. K., et al. (2007).Optics Express, 15(6), 3333.
42. Kaplan, A. F., Xu, T., & Jay Guo, L. (2011). Applied Physics Letters, 99(14), 143111.
43. Kumar, K., Duan, H., Hegde, R. S., Koh, S. C. W., Wei, J. N., & Yang, J. K. W. (2012). Nature Nanotechnology, 7(9), 557–561.
44. Clausen, J. S., Højlund-Nielsen, E., et al . (2014).Nano Letters, 14(8), 4499–4504.
45. Neubrech, F., Duan, X., & Liu, N. (2020). Science Advances, 6(36), eabc2709.
46. Duan, X., Kamin, S., & Liu, N. (2017). Nature Communications, 8, 14606.
47. Chen, Y., Duan, X.,et al. (2017). Nano Letters, 17(9), 5555–5560.
48. Gao, Y., Huang, C., Hao, C., Sun, (2018).ACS Nano 12 (9), 8847-8854
49. Daqiqeh Rezaei, S., Ho, J., Naderi, A., Tavakkoli Yaraki, M., Wang, T., Dong, Z., Yang, J. K. W. (2019). Advanced Optical Materials, 1900735.
50. Ding, T., Rüttiger, C., Zheng, X., Benz, F. (2016). Advanced Optical Materials, 4(6), 877–882.
51. Gholipour, B., Karvounis (2018). NPG Asia Materials, 10(6), 533–539.
52. Jingqi He, Meng Zhang, Shiwei Shu, Yan Yan, and Mingxiang Wang, (2020). Opt. Express 28, 37590-37599
53. Shu, F.-Z., Yu, F.-F., et al. (2018). Advanced Optical Materials, 6(7), 1700939.
54. Huang, M., Jun Tan, A., et al. (2019). Nature Communications, 10(1).
55. Wang, G., Chen, X., et al. (2016). ACS Nano, 10(2), 1788–1794
56. Franklin, D., Frank, R., Wu, S.-T., & Chanda, D. (2017),8, 15209.
57. Zhang, S., Zhang, J., Goh, W., Liu, Y., Tjiptoharsono, F., Lee, H., Jiang, C., Ding, J., Yang, J. & Dong, Z. (2023). Nanophotonics, 12(8), 1387-1395.
58. Millyard, M. G., Min Huang, F., White, R., Spigone, E., Kivioja, J., & Baumberg, J. J. (2012).Applied Physics Letters, 100(7), 073101.
59. Tseng, M. L., Yang, J., Semmlinger, M., Zhang, C., Nordlander, P., & Halas, N. J. (2017). 17(10), 6034–6039.
60. Song, S., Ma, X., et al. (2017). Advanced Optical Materials, 5(9),1600829.
61. Kim, Y. J., Yoo, Y. J., et al. (2020). Nanophotonics, 9(10), 3287–3293.
62. Ayana Mizuno and Atsushi Ono, (2021) ACS Applied Nano Materials 4 (9), 9721-9728
63. 高永菱,「鎵奈米粒子蒸鍍於聚合物之自組裝機制探討及其電漿子光學性質研究」,國立中央大學,碩士論文,民國111年06月。
64 Lin MH, Chen HY, Gwo S. (2010) J.Am Chem Soc.132 (32):11259-63.
65. Niclas S. Mueller, Bruno G. M. Vieira, Florian Schulz, Patryk Kusch, Valerio Oddone,
Eduardo B. Barros , (2018). ACS Photonics ,5(10),3962-3969
66. Jain, P.K. and M.A. El-Sayed, (2010). Chemical Physics Letters,487(4): p. 153-164.
67. Mizuno, A., & Ono, A. (2019). Applied Surface Science, 480, 846–850.
指導教授 陳一塵(I-Chen Chen) 審核日期 2023-11-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明