博碩士論文 110329004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:18.188.154.250
姓名 賴宗群(Tsung-Chun Lai)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 以MAGE製備鈷鐵、鈷鐵鉻合金微柱,並探討其在1.0 M KOH中之電解析氧性能
(Chromium Incorporated with Cobalt-Iron Alloy Micro Columns, Which Fabricated by MAGE for Oxygen Evolution Reaction in 1.0 M KOH)
相關論文
★ 1M KOH中Ag-Cu、Ag-Co二元薄膜觸媒對氧還原之催化★ Mg2Ni1-xCux合金在6M KOH水溶液中之電化學吸放氫性質及相關腐蝕行為之研究
★ 以電化學方法在鋅箔上製備氧化鋅奈米結構★ 固態氧化物燃料電池陰極 La0.8Sr0.2Mn1−xRuxO3之製作與特性研究
★ 奈米氧化鋅結構之電化學研製及其在發光二極體之應用★ 銅微柱表面之電化學析鍍氧化鋅奈米結構研究
★ 香草醛在含50 V% 乙二醇低氯離子溶液中對AA6060鋁合金之腐蝕抑制研究★ 磁控濺鍍製備鋯、鈦共摻氧化鋅薄膜之結構與光電特性分析
★ 即時影像監控導引下連續電鍍製作銅-鋅合金微柱並研究其結構與機械性質★ 鑭、鍶、銀、錳氧化物之製備與其作為固態氧化物燃料電池陰極之研究
★ Photodetector - Light Harvesting and specific surface Enhancement (LivE)★ 具奈米結構赤鐵礦之製備及其在光電化學行為研究
★ 以溶凝膠法製備鋁鈦共摻雜氧化鋅薄膜並研究其微結構,腐蝕及光電化學之特性★ Ba0.5Sr0.5Co0.8Fe0.2O3-δ-La3Ni2O7+δ複合 結構應用於P-SOFC陰極之可行性研究
★ 銅鎳合金微結構之微電鍍研究★ 以微電鍍法製備三維銅錫介金屬化合物微結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究係以微陽極導引電鍍法(Micro-anode guided electroplating,
MAGE)製備具三維結構之鈷鐵、鈷鐵鉻合金微柱,析鍍所使用的微陽
極和陰極分別係以直徑為 250 μm 白金絲以及 0.5 mm 銅線所製成,
析鍍時之電壓及間距分別設置為 3.6 V、50 μm,透過改變二元鍍浴中
亞鐵離子濃度(0.15 M~0.30 M),以及三元鍍浴中鉻離子濃度(2.00
mM~8.00 mM)析鍍合金微柱,其中,添加鉻離子濃度大於 10.00 mM
時的析鍍效率較差,無法析鍍出完整微柱。將上述析鍍之合金微柱個
別以 SEM、EDS 及 XRD 分析其表面形貌、組成成分以及晶體結構等
特性,再以奈米壓痕分析微柱的機械性質,而後將剛析鍍完的微柱置
入 1.0 M KOH(pH = 14)的電解液中,進行各項電化學分析,如線性掃
描伏安法、循環伏安法、計時電位法及電化學交流阻抗,藉此探究各
合金微柱之電化學性質以及其析氧效能。
於研究結果可得,鈷鐵鉻合金微柱- Co32Fe40Cr28的析氧效能為最
佳,無論是起始電位(Eonset = 1.43 V vs RHE)、過電位(η10 = 302 mV)又
或是塔弗斜率(Tafel slope = 62.6 mV/dec)皆為本研究中最低,代表於
析氧反應時所需耗能較少,與貴金屬氧化物 IrO2 之過電位(η10 = 270
mV)相比較,效能還是有些許差距。綜上所述可論證,鈷鐵鉻相較鈷
ii
鐵合金微柱具更優異之析氧效能,其中,鉻的添入可提升合金電極表
面之催化活性。
摘要(英) Micro-anode guided electroplating (MAGE) was used to prepare
cobalt-iron and cobalt-iron-chromium alloy micro columns with threedimensional structure in this study. The microanode and cathode used in
the plating were made of platinum wire with the diameter of 250 μm and
copper wire with the diameter of 0.5 mm, respectively. The voltage and
gap between two electrode were set to 3.6 V and 50 μm, respectively. By
changing the concentration of FeSO4⸱7H2O (0.15 M~0.30 M) in the binary
plating bath and the concentration of Cr2(SO4)3⸱3H2O (2.00 mM~8.00
mM) in the ternary plating bath, which the alloy micro columns were
plated. When the concentration of Cr2(SO4)3⸱3H2O was greater than 10.00
mM, the alloy micro columns couldn’t be plated imcompletely. The alloy
micro columns were plated and analyzed by SEM, EDS and XRD
respectively for their surface morphology, composition, crystal structure
etc, then use nanoindenter to analyze the mechanical properties of the
micro columns. Afterwards, place the as-plated micro columns into the 1.0
M KOH (pH = 14) electrolyte and carry out several electrochemical
analyses, such as linear sweep voltammetry (LSV), cyclic voltammetry
(CV), chronopotentiometry (CP), and electrochemical impedance
spectroscopy (EIS). In order to explore the electrochemical properties of
each alloy micro columns and their oxygen evolution efficiency.
The results show that the cobalt-iron-chromium alloy micro columnCo32Fe40Cr28 has the best oxygen evolution performance. Regardless of the
onset potential (Eonset = 1.43 V vs RHE), overpotential (η10 = 302 mV) and
iv
the Tafel slope (62.6 mV/dec) are the lowest in this study. The lower the
value of the above three, the less energy is required for the oxygen
evolution reaction. Besides, there is still a slight gap in the overpotential
between Co32Fe40Cr28 and noble metal oxide IrO2 (η10 = 270 mV). In
summary, it can be demonstrated that cobalt-iron-chromium has better
oxygen evolution performance than cobalt-iron alloy micro columns. And
the incorporation of chromium can improve the catalytic activity of the
alloy electrode surface.
關鍵字(中) ★ 微陽極導引電鍍法
★ 異常共鍍
★ 鈷鐵合金
★ 鈷鐵鉻合金
★ 析氧反應
★ 微柱陣列
關鍵字(英) ★ MAGE
★ Anomalous co-deposition
★ Cobalt-iron alloy
★ Cobalt-iron-chromium alloy
★ Oxygen evolution reaction(OER)
★ Micro columns array
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vii
表目錄 x
圖目錄 xii
第一章、 前言 1
1-1 當前氫能源發展趨勢 1
1-2 水電解產氫 1
1-3 克服陽極過電位 2
1-4 陽極水電解之催化電極選擇 2
1-5 研究動機 3
第二章、 文獻回顧 4
2-1 電鍍原理 4
2-2 局部電化學沉積製程之發展 4
2-3 微陽極導引電鍍法之文獻回顧 6
2-4 合金共鍍 8
2-4-1 規則共鍍(Regular co-deposition) 9
2-4-2 異常共鍍(Anomalous co-deposition) 9
2-5 水電解析氧理論 11
2-5-1 鹼性水電解析氧反應(Oxygen Evolution Reaction, OER) 11
2-5-2 析氧火山圖 12
2-6 鐵族合金之析氧反應相關研究 13
2-6-1 鈷鐵合金 13
2-6-2 鎳鐵合金 14
2-6-3 鎳鈷合金 15
2-6-4 鈷鐵鉻合金 16
第三章、 研究方法 18
3-1 實驗流程 18
3-2 合金鍍浴配置 18
3-2-1 鈷鐵合金鍍浴配置 19
3-2-2 鈷鐵鉻合金鍍浴配置 19
3-3 陰陽極製備 19
3-4 微陽極導引電鍍法 20
3-5 SEM表面形貌觀測 21
3-6 EDS成分分析 21
3-7 XRD晶體結構分析 21
3-8 EPMA元素區域分析 22
3-9 XPS表面元素及化學價態分析 22
3-10 奈米壓痕材料機械性質分析 23
3-11 析氧反應之電化學分析 24
3-11-1 線性掃描伏安法(Linear sweep voltammetry, LSV) 25
3-11-2 循環伏安法(Cyclic vltammetry, CV) 26
3-11-3 計時電位法(Chronopotentiometry, CP) 27
3-11-4 電化學交流阻抗(Electrochemical impedance spectroscopy, EIS) 27
3-12 排水集氣法 28
第四章、 結果 29
4-1 改變二元鍍浴中亞鐵離子濃度之特性分析 29
4-1-1 鈷鐵合金微柱之表面形貌與柱徑 29
4-1-2 鈷鐵合金微柱之成分分析 30
4-1-3 鈷鐵合金微柱之晶體結構 30
4-2 改變三元鍍浴中鉻離子濃度之特性分析 30
4-2-1 鈷鐵鉻合金微柱之表面形貌與柱徑 31
4-2-2 鈷鐵鉻合金微柱之成分分析 32
4-2-3 鈷鐵鉻合金微柱之晶體結構 32
4-3 鈷鐵、鈷鐵鉻合金微柱之機械性質 32
4-4 鈷鐵、鈷鐵鉻合金微柱於1.0 M KOH中之電化學析氧反應 33
4-4-1 鈷鐵、鈷鐵鉻合金微柱於析氧反應下之線性掃描伏安法 33
4-4-2 鈷鐵、鈷鐵鉻合金微柱於析氧反應下之循環伏安法 36
4-4-3 鈷鐵、鈷鐵鉻合金微柱於析氧反應下之計時電位法 37
4-4-4 鈷鐵、鈷鐵鉻合金微柱於析氧反應下之交流阻抗頻譜 38
4-5 鈷鐵、鈷鐵鉻合金微柱之元素分布 40
4-6 鈷鐵鉻合金微柱之光電子能譜分析 41
4-7 鈷鐵鉻合金微柱陣列之定電位析氧排水集氣法 42
第五章、 討論 43
5-1 改變二元鍍浴中亞鐵離子濃度對鈷鐵合金微柱表面形貌之影響 43
5-2 改變二元鍍浴中亞鐵離子濃度對鈷鐵合金微柱組成成分之影響 43
5-3 改變三元鍍浴中鉻離子濃度對鈷鐵鉻合金微柱表面形貌之影響 44
5-4 改變三元鍍浴中鉻離子濃度對鈷鐵鉻合金微柱組成成分之影響 44
5-5 相異組成之鈷鐵、鈷鐵鉻合金微柱之晶體結構 45
5-6 改變三元鍍浴中鉻離子濃度對鈷鐵、鈷鐵鉻合金微柱機械性質之影響 45
5-7 相異組成之鈷鐵、鈷鐵鉻合金微柱之析氧效能分析 46
5-7-1 線性掃描伏安法 47
5-7-2 循環伏安法 47
5-7-3 計時電位與定電流排水集氣法 47
5-7-4 交流阻抗頻譜 48
5-8 本研究製備之合金微柱與文獻析氧效能之比較 49
5-9 鈷鐵鉻合金微柱CFR8之鉻含量與元素分布之關係 49
5-10 鈷鐵(CF30)、鈷鐵鉻(CFR8)合金微柱之表面元素組成與價態分布 49
5-11 鈷鐵鉻合金微柱之5*4陣列析氧效能 51
第六章、 結論與未來展望 52
參考文獻 54
參考文獻 1. Holechek, J.L., H.M.E. Geli, M.N. Sawalhah, and R. Valdez, A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050? Sustainability, 2022. 14(8): p. 4792.
2. Houghton, J., Global warming. Reports on Progress in Physics, 2005. 68(6): p. 1343.
3. Veziroglu, T.N., Conversion to Hydrogen Economy. Energy Procedia, 2012. 29: p. 654-656.
4. 劉彥廷, 鎳鉬鎢合金微柱與微螺旋結構之 MAGE製備及其在1.0 M KOH中之產氫研究, in 材料科學與工程研究所. 2022, 國立中央大學: 桃園縣. p. 170.
5. Noussan, M., P.P. Raimondi, R. Scita, and M. Hafner, The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective. Sustainability, 2021. 13(1): p. 298.
6. Schalenbach, M., G. Tjarks, M. Carmo, W. Lueke, M. Mueller, and D. Stolten, Acidic or Alkaline? Towards a New Perspective on the Efficiency of Water Electrolysis. Journal of The Electrochemical Society, 2016. 163(11): p. F3197.
7. Pletcher, D. and X. Li, Prospects for alkaline zero gap water electrolysers for hydrogen production. International Journal of Hydrogen Energy, 2011. 36(23): p. 15089-15104.
8. Montoya, J.H., M. Garcia-Mota, J.K. Nørskov, and A. Vojvodic, Theoretical evaluation of the surface electrochemistry of perovskites with promising photon absorption properties for solar water splitting. Physical Chemistry Chemical Physics, 2015. 17(4): p. 2634-2640.
9. Zhang, Y., T. Gao, Z. Jin, X. Chen, and D. Xiao, A robust water oxidation electrocatalyst from amorphous cobalt–iron bimetallic phytate nanostructures. Journal of Materials Chemistry A, 2016. 4(41): p. 15888-15895.
10. Wu, Z.-P., X.F. Lu, S.-Q. Zang, and X.W. Lou, Non-Noble-Metal-Based Electrocatalysts toward the Oxygen Evolution Reaction. Advanced Functional Materials, 2020. 30(15): p. 1910274.
11. Qu, H.-Y., X. He, Y. Wang, and S. Hou, Electrocatalysis for the Oxygen Evolution Reaction in Acidic Media: Progress and Challenges. Applied Sciences, 2021. 11(10): p. 4320.
12. Suen, N.-T., S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu, and H.M. Chen, Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews, 2017. 46(2): p. 337-365.
13. Feng, C., M.B. Faheem, J. Fu, Y. Xiao, C. Li, and Y. Li, Fe-Based Electrocatalysts for Oxygen Evolution Reaction: Progress and Perspectives. ACS Catalysis, 2020. 10(7): p. 4019-4047.
14. King, L.A., M.A. Hubert, C. Capuano, J. Manco, N. Danilovic, E. Valle, T.R. Hellstern, K. Ayers, and T.F. Jaramillo, A non-precious metal hydrogen catalyst in a commercial polymer electrolyte membrane electrolyser. Nature Nanotechnology, 2019. 14(11): p. 1071-1074.
15. Vesborg, P.C.K. and T.F. Jaramillo, Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy. RSC Advances, 2012. 2(21): p. 7933-7947.
16. Gu, X., Y.-G. Ji, J. Tian, X. Wu, and L. Feng, Combined MOF derivation and fluorination imparted efficient synergism of Fe-Co fluoride for oxygen evolution reaction. Chemical Engineering Journal, 2022. 427: p. 131576.
17. Yang, F., K. Sliozberg, I. Sinev, H. Antoni, A. Bähr, K. Ollegott, W. Xia, J. Masa, W. Grünert, B.R. Cuenya, W. Schuhmann, and M. Muhler, Synergistic Effect of Cobalt and Iron in Layered Double Hydroxide Catalysts for the Oxygen Evolution Reaction. ChemSusChem, 2017. 10(1): p. 156-165.
18. Chen, J., H. Li, S. Chen, J. Fei, C. Liu, Z. Yu, K. Shin, Z. Liu, L. Song, G. Henkelman, L. Wei, and Y. Chen, Co–Fe–Cr (oxy)Hydroxides as Efficient Oxygen Evolution Reaction Catalysts. Advanced Energy Materials, 2021. 11(11): p. 2003412.
19. 程憲威, 以微電鍍法製備鎳鉬合金微柱並探討其在1.0 M KOH溶液中電解產氫之性能, in 機械工程學系. 2022, 國立中央大學.
20. 謝東佑, 自焦磷酸浴中以微陽極導引電鍍製備鎳-鎢合金微柱、微螺旋及其在1.0 M KOH 中電解產氫特性研究, in 材料科學與工程研究所. 2022, 國立中央大學: 桃園縣. p. 223.
21. 黃勤, Ni-W-Zn 三元合金微柱、微螺旋之製備 及其在1.0 M KOH(pH = 14)中之產氫行為探討, in 機械工程學系. 2022, 國立中央大學: 桃園縣. p. 177.
22. 黃楚雯, 鎳鉬鋅合金微柱、微螺旋之製備及其在1M KOH中之產氫行為探討, in 機械工程學系. 2022, 國立中央大學: 桃園縣. p. 161.
23. 曾耀田, 李昱, 林景崎, 黃衍任, 鄭憲清, and 曹譯友, 鎳鐵合金微柱 (Ni41Fe59, Ni55Fe45, Ni71Fe29 及 Ni86Fe14) 之製作及. Journal of Chinese Corrosion Engineering, 2021. 35(2): p. 8-16.
24. 拉維雅, On the Fabrication of Three-Dimensional Nickel-Zinc alloys by electroplating and Their Performance of Hydrogen evolution in Alkaline Water Electrolysis, in 應用材料科學國際研究生碩士學位學程. 2020, 國立中央大學.
25. 李盈家, 以微電鍍法析鍍鎳鎢合金微結構並研究其在鹼性溶液電解產氫行為, in 材料科學與工程研究所. 2020, 國立中央大學.
26. Sun, H., Z. Yan, F. Liu, W. Xu, F. Cheng, and J. Chen, Self-Supported Transition-Metal-Based Electrocatalysts for Hydrogen and Oxygen Evolution. Advanced Materials, 2020. 32(3): p. 1806326.
27. Louie, M.W. and A.T. Bell, An Investigation of Thin-Film Ni–Fe Oxide Catalysts for the Electrochemical Evolution of Oxygen. Journal of the American Chemical Society, 2013. 135(33): p. 12329-12337.
28. Stevens, M.B., L.J. Enman, A.S. Batchellor, M.R. Cosby, A.E. Vise, C.D.M. Trang, and S.W. Boettcher, Measurement Techniques for the Study of Thin Film Heterogeneous Water Oxidation Electrocatalysts. Chemistry of Materials, 2017. 29(1): p. 120-140.
29. 黃俊誠. 電鍍(Electroplating). 氧化還原反應 2009.
30. 鄧永裕 and 徐文祥, 不同厚度電鍍鎳微結構之機械特性研究. 2004.
31. 蘇癸陽, 實用電鍍理論與實際. 民國八十八年, 台北: 復文書局.
32. Yeo, S.H. and J.H. Choo, Effects of rotor electrode in the fabrication of high aspect ratio microstructures by localized electrochemical deposition. Journal of Micromechanics and Microengineering, 2001. 11(5): p. 435.
33. Seol, S.K., J.M. Yi, X. Jin, C.C. Kim, J.H. Je, W.L. Tsai, P.C. Hsu, Y. Hwu, C.H. Chen, L.W. Chang, and G. Margaritondo, Coherent Microradiology Directly Observes a Critical Cathode-Anode Distance Effect in Localized Electrochemical Deposition. Electrochemical and Solid-State Letters, 2004. 7(9): p. C95.
34. Seol, S.-K., A.-R. Pyun, Y. Hwu, G. Margaritondo, and J.-H. Je, Localized Electrochemical Deposition of Copper Monitored Using Real-Time X-ray Microradiography. Advanced Functional Materials, 2005. 15(6): p. 934-937.
35. Seol, S.K., J.T. Kim, J.H. Je, Y. Hwu, and G. Margaritondo, Fabrication of Freestanding Metallic Micro Hollow Tubes by Template-Free Localized Electrochemical Deposition. Electrochemical and Solid-State Letters, 2007. 10(5): p. C44.
36. Lin, C.S., C.Y. Lee, J.H. Yang, and Y.S. Huang, Improved Copper Microcolumn Fabricated by Localized Electrochemical Deposition. Electrochemical and Solid-State Letters, 2005. 8(9): p. C125.
37. Lee, C.-Y., C.-S. Lin, and B.-R. Lin, Localized electrochemical deposition process improvement by using different anodes and deposition directions. Journal of Micromechanics and Microengineering, 2008. 18(10): p. 105008.
38. Habib, M.A., S.W. Gan, H.-S. Lim, and M. Rahman, Fabrication of EDM electrodes by localized electrochemical deposition. International Journal of Precision Engineering and Manufacturing, 2008. 9(2): p. 75-80.
39. Pané, S., V. Panagiotopoulou, S. Fusco, E. Pellicer, J. Sort, D. Mochnacki, K.M. Sivaraman, B.E. Kratochvil, M.D. Baró, and B.J. Nelson, The effect of saccharine on the localized electrochemical deposition of Cu-rich Cu–Ni microcolumns. Electrochemistry Communications, 2011. 13(9): p. 973-976.
40. Wang, F., H. Xiao, and H. He, Effects of applied potential and the initial gap between electrodes on localized electrochemical deposition of micrometer copper columns. Scientific Reports, 2016. 6(1): p. 26270.
41. Wang, F., F. Wang, and H. He, Parametric Electrochemical Deposition of Controllable Morphology of Copper Micro-Columns. Journal of The Electrochemical Society, 2016. 163(10): p. E322.
42. Wang, F., H. Bian, and Y. Xiao, Fabrication of Micro-Sized Copper Columns Using Localized Electrochemical Deposition with a 20 μm Diameter Micro Anode. ECS Journal of Solid State Science and Technology, 2019. 8(4): p. P223.
43. Wang, F., B. Hua, and Q. Niu, Fabrication of micro-sized-copper column array through localized electrochemical deposition using 20-μm-diameter micro-anode. Journal of Solid State Electrochemistry, 2022. 26(3): p. 799-808.
44. 陳承志, 銅基材上之單軸微電析鎳製程研究, in 機械工程研究所. 1999, 國立中央大學: 桃園縣. p. 158.
45. 游絢博, 陽極單軸間歇運動下之直流、脈衝微電析鎳, in 機械工程研究所. 2000, 國立中央大學: 桃園縣. p. 177.
46. 游睿為, 單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析, in 機械工程研究所. 2001, 國立中央大學: 桃園縣. p. 202.
47. 葉柏青, 微陽極引導電鍍與監測, in 機械工程研究所. 2003, 國立中央大學: 桃園縣. p. 147.
48. 張庭綱, 微陽極導引電鍍法製作微銅柱及銅柵欄之研究, in 機械工程研究所. 2004, 國立中央大學: 桃園縣. p. 168.
49. 鄭家宏, 以微陽極導引電鍍法製作鎳銅合金微柱, in 機械工程研究所. 2005, 國立中央大學: 桃園縣. p. 151.
50. Lin, J.C., S.B. Jang, D.L. Lee, C.C. Chen, P.C. Yeh, T.K. Chang, and J.H. Yang, Fabrication of micrometer Ni columns by continuous and intermittent microanode guided electroplating. Journal of Micromechanics and Microengineering, 2005. 15(12): p. 2405.
51. Chang, T.K., J.C. Lin, J.H. Yang, P.C. Yeh, D.L. Lee, and S.B. Jiang, Surface and transverse morphology of micrometer nickel columns fabricated by localized electrochemical deposition. Journal of Micromechanics and Microengineering, 2007. 17(11): p. 2336.
52. Lin, J.C., T.K. Chang, J.H. Yang, J.H. Jeng, D.L. Lee, and S.B. Jiang, Fabrication of a micrometer Ni–Cu alloy column coupled with a Cu micro-column for thermal measurement. Journal of Micromechanics and Microengineering, 2009. 19(1): p. 015030.
53. Yang, J.H., J.C. Lin, T.K. Chang, X.B. You, and S.B. Jiang, Localized Ni deposition improved by saccharin sodium in the intermittent MAGE process. Journal of Micromechanics and Microengineering, 2009. 19(2): p. 025015.
54. 楊仁泓, 微陽極導引電鍍法製備微析物之局部電場強度分析, in 機械工程研究所. 2009, 國立中央大學: 桃園縣. p. 107.
55. Lin, J.C., J.H. Yang, T.K. Chang, and S.B. Jiang, On the structure of micrometer copper features fabricated by intermittent micro-anode guided electroplating. Electrochimica Acta, 2009. 54(24): p. 5703-5708.
56. 黃俊強, 微電鍍法之製程參數對其製備鎳鐵合金微柱之形貌、機械性質與防蝕特性之影響, in 機械工程研究所. 2010, 國立中央大學: 桃園縣. p. 72.
57. 張永杰, 即時影像監控導引下連續電鍍製作銅-鋅合金微柱並研究其結構與機械性質, in 材料科學與工程研究所. 2013, 國立中央大學: 桃園縣. p. 108.
58. Ciou, Y.-J., Y.-R. Hwang, and J.-C. Lin, Fabrication of Two-Dimensional Microstructures by Using Micro-Anode-Guided Electroplating with Real-Time Image Processing. ECS Journal of Solid State Science and Technology, 2014. 3(7): p. P268.
59. 顧乃華, 以微陽極導引電鍍法製備銅螺旋微米結構與其機械性質分析, in 機械工程學系. 2015, 國立中央大學: 桃園縣. p. 97.
60. Guan, X., 以電鍍法製備鈷鐵鎳合金三維微結構及其特性之研究, in 機械工程學系. 2019, 國立中央大學: 桃園縣. p. 101.
61. 拉維雅, On the Fabrication of Three-Dimensional Nickel-Zinc alloys by electroplating and Their Performance of Hydrogen evolution in Alkaline Water Electrolysis, in 應用材料科學國際研究生碩士學位學程. 2020, 國立中央大學: 桃園縣. p. 75.
62. 李盈家, 以微電鍍法析鍍鎳鎢合金微結構並研究其在鹼性溶液電解產氫行為, in 材料科學與工程研究所. 2020, 國立中央大學: 桃園縣. p. 150.
63. Electrodeposition of Alloys: PRINCIPLES and PRACTICE, in Electrodeposition of Alloys, A. Brenner, Editor. 1963, Academic Press. p. ii.
64. Dahms, H. and I.M. Croll, The Anomalous Codeposition of Iron‐Nickel Alloys. Journal of The Electrochemical Society, 1965. 112(8): p. 771.
65. Deligianni, H. and L. Romankiw. Effect of near surface pH on electrodeposition of iron and permalloy. in Proceeding Symp. Magnetic Materials, Processes, and Devices., The Electrochemical Society. 1990.
66. Harris, T.M. and J.S. Clair, Testing the Role of Metal Hydrolysis in the Anomalous Electrodeposition of Ni‐Fe Alloys. Journal of The Electrochemical Society, 1996. 143(12): p. 3918.
67. Lieder, M. and S. BiaŁŁozor, Study of the electrodeposition process of NiFE alloys from chloride electrolytes: II. Surface Technology, 1985. 26(1): p. 23-34.
68. Grande, W.C. and J.B. Talbot, Electrodeposition of Thin Films of Nickel‐Iron: I . Experimental. Journal of The Electrochemical Society, 1993. 140(3): p. 669.
69. Krause, T., L. Arulnayagam, and M. Pritzker, Model for Nickel‐Iron Alloy Electrodeposition on a Rotating Disk Electrode. Journal of The Electrochemical Society, 1997. 144(3): p. 960.
70. Matlosz, M., Competitive Adsorption Effects in the Electrodeposition of Iron‐Nickel Alloys. Journal of The Electrochemical Society, 1993. 140(8): p. 2272.
71. Baker, B.C. and A.C. West, Electrochemical Impedance Spectroscopy Study of Nickel‐Iron Deposition: I. Experimental Results. Journal of The Electrochemical Society, 1997. 144(1): p. 164.
72. Andricacos, P.C., C. Arana, J. Tabib, J. Dukovic, and L.T. Romankiw, Electrodeposition of Nickel‐Iron Alloys: I . Effect of Agitation. Journal of The Electrochemical Society, 1989. 136(5): p. 1336.
73. Hessami, S. and C.W. Tobias, In-situ measurement of interfacial pH using a rotating ring-disk electrode. AIChE Journal, 1993. 39(1): p. 149-162.
74. Jiao, Y., Y. Zheng, M. Jaroniec, and S.Z. Qiao, Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chemical Society Reviews, 2015. 44(8): p. 2060-2086.
75. Rossmeisl, J., A. Logadottir, and J.K. Nørskov, Electrolysis of water on (oxidized) metal surfaces. Chemical Physics, 2005. 319(1): p. 178-184.
76. Rossmeisl, J., Z.W. Qu, H. Zhu, G.J. Kroes, and J.K. Nørskov, Electrolysis of water on oxide surfaces. Journal of Electroanalytical Chemistry, 2007. 607(1): p. 83-89.
77. Man, I.C., H.-Y. Su, F. Calle-Vallejo, H.A. Hansen, J.I. Martínez, N.G. Inoglu, J. Kitchin, T.F. Jaramillo, J.K. Nørskov, and J. Rossmeisl, Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces. ChemCatChem, 2011. 3(7): p. 1159-1165.
78. Koper, M.T.M., Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis. Journal of Electroanalytical Chemistry, 2011. 660(2): p. 254-260.
79. Seh, Z.W., J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov, and T.F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017. 355(6321): p. eaad4998.
80. Medford, A.J., A. Vojvodic, J.S. Hummelshøj, J. Voss, F. Abild-Pedersen, F. Studt, T. Bligaard, A. Nilsson, and J.K. Nørskov, From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. Journal of Catalysis, 2015. 328: p. 36-42.
81. Matsumoto, Y., S. Yamada, T. Nishida, and E. Sato, Oxygen Evolution on La1 − x Srx Fe1 − y Coy  O 3 Series Oxides. Journal of The Electrochemical Society, 1980. 127(11): p. 2360.
82. Matsumoto, Y. and E. Sato, Electrocatalytic properties of transition metal oxides for oxygen evolution reaction. Materials Chemistry and Physics, 1986. 14(5): p. 397-426.
83. Liu, P.F., S. Yang, L.R. Zheng, B. Zhang, and H.G. Yang, Electrochemical etching of α-cobalt hydroxide for improvement of oxygen evolution reaction. Journal of Materials Chemistry A, 2016. 4(24): p. 9578-9584.
84. McCrory, C.C.L., S. Jung, J.C. Peters, and T.F. Jaramillo, Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. Journal of the American Chemical Society, 2013. 135(45): p. 16977-16987.
85. Burke, M.S., M.G. Kast, L. Trotochaud, A.M. Smith, and S.W. Boettcher, Cobalt–Iron (Oxy)hydroxide Oxygen Evolution Electrocatalysts: The Role of Structure and Composition on Activity, Stability, and Mechanism. Journal of the American Chemical Society, 2015. 137(10): p. 3638-3648.
86. Ye, S.-H., Z.-X. Shi, J.-X. Feng, Y.-X. Tong, and G.-R. Li, Activating CoOOH Porous Nanosheet Arrays by Partial Iron Substitution for Efficient Oxygen Evolution Reaction. Angewandte Chemie International Edition, 2018. 57(10): p. 2672-2676.
87. Corrigan, D.A., The Catalysis of the Oxygen Evolution Reaction by Iron Impurities in Thin Film Nickel Oxide Electrodes. Journal of The Electrochemical Society, 1987. 134(2): p. 377.
88. Trotochaud, L., S.L. Young, J.K. Ranney, and S.W. Boettcher, Nickel–Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron Incorporation. Journal of the American Chemical Society, 2014. 136(18): p. 6744-6753.
89. Friebel, D., M.W. Louie, M. Bajdich, K.E. Sanwald, Y. Cai, A.M. Wise, M.-J. Cheng, D. Sokaras, T.-C. Weng, R. Alonso-Mori, R.C. Davis, J.R. Bargar, J.K. Nørskov, A. Nilsson, and A.T. Bell, Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting. Journal of the American Chemical Society, 2015. 137(3): p. 1305-1313.
90. Rasiyah, P. and A.C.C. Tseung, A Mechanistic Study of Oxygen Evolution on NiCo2 O 4 : II . Electrochemical Kinetics. Journal of The Electrochemical Society, 1983. 130(12): p. 2384.
91. Rasiyah, P. and A.C.C. Tseung, A Mechanistic Study of Oxygen Evolution on Li‐Doped Co3 O 4. Journal of The Electrochemical Society, 1983. 130(2): p. 365.
92. Bocca, C., A. Barbucci, M. Delucchi, and G. Cerisola, NICKEL–COBALT oxide-coated electrodes: influence of the preparation technique on oxygen evolution reaction (OER) in an alkaline solution. International Journal of Hydrogen Energy, 1999. 24(1): p. 21-26.
93. Bajdich, M., M. García-Mota, A. Vojvodic, J.K. Nørskov, and A.T. Bell, Theoretical Investigation of the Activity of Cobalt Oxides for the Electrochemical Oxidation of Water. Journal of the American Chemical Society, 2013. 135(36): p. 13521-13530.
94. Li, Y.-F. and A. Selloni, Mechanism and Activity of Water Oxidation on Selected Surfaces of Pure and Fe-Doped NiOx. ACS Catalysis, 2014. 4(4): p. 1148-1153.
95. Jiang, J., A. Zhang, L. Li, and L. Ai, Nickel–cobalt layered double hydroxide nanosheets as high-performance electrocatalyst for oxygen evolution reaction. Journal of Power Sources, 2015. 278: p. 445-451.
96. Yang, Y., X. Cui, D. Gao, H. He, Y. Ou, M. Zhou, Q. Lai, X. Wei, P. Xiao, and Y. Zhang, Trimetallic CoFeCr hydroxide electrocatalysts synthesized at a low temperature for accelerating water oxidation via tuning the electronic structure of active sites. Sustainable Energy & Fuels, 2020. 4(7): p. 3647-3653.
97. Epp, J., 4 - X-ray diffraction (XRD) techniques for materials characterization, in Materials Characterization Using Nondestructive Evaluation (NDE) Methods, G. Hübschen, et al., Editors. 2016, Woodhead Publishing. p. 81-124.
98. Kulka, M., N. Makuch, P. Dziarski, and A. Piasecki, A study of nanoindentation for mechanical characterization of chromium and nickel borides’ mixtures formed by laser boriding. Ceramics International, 2014. 40(4): p. 6083-6094.
99. Ren, B., M. Wang, J. Liu, J. Ge, and H. Dong, Enhanced Basicity of Ag2O by Coordination to Soft Anions. ChemCatChem, 2015. 7(5): p. 761-765.
100. 蔡卿銘, 電位式二氧化碳感測元件單晶化 之研究及改進, in 電子物理系所. 2009, 國立交通大學. p. 1-44.
101. 電化學: 基本原理與應用. 1994: 五洲.
102. Haynes, W.M., CRC Handbook of Chemistry and Physics, 93rd Edition. 2012: Taylor & Francis.
103. Wang, M., Z. Wang, X. Gong, and Z. Guo, The intensification technologies to water electrolysis for hydrogen production – A review. Renewable and Sustainable Energy Reviews, 2014. 29: p. 573-588.
104. Appel, A.M. and M.L. Helm, Determining the Overpotential for a Molecular Electrocatalyst. ACS Catalysis, 2014. 4(2): p. 630-633.
105. de Chialvo, M.R.G. and A.C. Chialvo, The polarisation resistance, exchange current density and stoichiometric number for the hydrogen evolution reaction: theoretical aspects. Journal of Electroanalytical Chemistry, 1996. 415(1): p. 97-106.
106. Anantharaj, S., S. Noda, M. Driess, and P.W. Menezes, The Pitfalls of Using Potentiodynamic Polarization Curves for Tafel Analysis in Electrocatalytic Water Splitting. ACS Energy Letters, 2021. 6(4): p. 1607-1611.
107. Wang, J. and F. Ciucci, In-situ synthesis of bimetallic phosphide with carbon tubes as an active electrocatalyst for oxygen evolution reaction. Applied Catalysis B: Environmental, 2019. 254: p. 292-299.
108. 曾啟恩, 吳翊慈, and 蔡秉均, 電化學阻抗頻譜的原理與應用. 化工, 2022. 69(4): p. 36-50.
109. Guo, D., Z. Zeng, Z. Wan, Y. Li, B. Xi, and C. Wang, A CoN‐based OER Electrocatalyst Capable in Neutral Medium: Atomic Layer Deposition as Rational Strategy for Fabrication. Advanced Functional Materials, 2021. 31(24): p. 2101324.
110. Nik Rozlin, N.M. and A.M. Alfantazi, Nanocrystalline cobalt–iron alloy: Synthesis and characterization. Materials Science and Engineering: A, 2012. 550: p. 388-394.
111. Akiyama, T. and H. Fukushima, Recent Study on the Mechanism of the Electrodeposition of Iron-group Metal Alloys. ISIJ International, 1992. 32(7): p. 787-798.
112. Zech, N., E.J. Podlaha, and D. Landolt, Anomalous Codeposition of Iron Group Metals: I. Experimental Results. Journal of The Electrochemical Society, 1999. 146(8): p. 2886.
113. Bikulčius, G., A. Češunienė, A. Selskienė, V. Pakštas, and T. Matijošius, Dry sliding tribological behavior of Cr coatings electrodeposited in trivalent chromium sulphate baths. Surface and Coatings Technology, 2017. 315: p. 130-138.
114. Mahdavi, S., S.R. Allahkaram, A. Heidarzadeh, and R. Tavangar, Characteristics and properties of Co–Cr alloy coatings prepared by electrodeposition. Surface Engineering, 2020. 36(9): p. 966-974.
115. Mardanifar, A., A. Mohseni, and S. Mahdavi, Wear and corrosion of Co-Cr coatings electrodeposited from a trivalent chromium solution: Effect of heat treatment temperature. Surface and Coatings Technology, 2021. 422: p. 127535.
116. Nasr Esfahani, M.R., S. Samanifar, A. Ghasemi, A.J. Rashidi, E. Paimozd, and M. Tavoosi, Fabrication and magnetic characteristics of electrodeposited FeCr nanowire arrays. Journal of Magnetism and Magnetic Materials, 2021. 537: p. 168218.
117. Xiong, M. and D.G. Ivey, Composition effects of electrodeposited Co-Fe as electrocatalysts for the oxygen evolution reaction. Electrochimica Acta, 2018. 260: p. 872-881.
118. Romanski, A., H. Frydrych, and J. Konstanty, Article: The influence of iron content and powder metallurgy processing route on microstructure and mechanical properties of cobalt-iron materials. Archives of Metallurgy and Materials, 2004. 49: p. 973-980.
119. Frydrych, H., A. Romanski, and J. Konstanty, The influence of iron content and powder metallurgy processing route on microstructure and mechanical properties of cobalt-iron materials. Archives of Metallurgy and Materials, 2004. 49(4): p. 973-980.
120. Wu, D., J. Zhang, J. Huang, H. Bei, and T.-G. Nieh, Grain-boundary strengthening in nanocrystalline chromium and the Hall–Petch coefficient of body-centered cubic metals. Scripta Materialia, 2013. 68(2): p. 118-121.
121. Saravanan, G. and S. Mohan, Structure, composition and corrosion resistance studies of Co–Cr alloy electrodeposited from deep eutectic solvent (DES). Journal of Alloys and Compounds, 2012. 522: p. 162-166.
122. Firouzi-Nerbin, H., F. Nasirpouri, and E. Moslehifard, Pulse electrodeposition and corrosion properties of nanocrystalline nickel-chromium alloy coatings on copper substrate. Journal of Alloys and Compounds, 2020. 822: p. 153712.
123. Gloriant, T., Microhardness and abrasive wear resistance of metallic glasses and nanostructured composite materials. Journal of Non-Crystalline Solids, 2003. 316(1): p. 96-103.
124. Zhang, T., M.R. Nellist, L.J. Enman, J. Xiang, and S.W. Boettcher, Modes of Fe incorporation in Co–Fe (Oxy) hydroxide oxygen evolution electrocatalysts. ChemSusChem, 2019. 12(9): p. 2015-2021.
125. Samin, A.J. and C.D. Taylor, A one-dimensional time-dependent model for studying oxide film growth on metallic surfaces. Journal of Applied Physics, 2018. 123(24).
126. Anantharaj, S. and S. Noda, Appropriate Use of Electrochemical Impedance Spectroscopy in Water Splitting Electrocatalysis. ChemElectroChem, 2020. 7(10): p. 2297-2308.
127. Database, N.X.r.P.S., NIST Standard Reference Database Number 20, National Institute of Standards and Technology, Gaithersburg MD, 20899. 2000.
128. Madden, J.D., S.R. Lafontaine, and I.W. Hunter. Fabrication by electrodeposition: building 3D structures and polymer actuators. in MHS′95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science. 1995.
129. Madden, J.D. and I.W. Hunter, Three-dimensional microfabrication by localized electrochemical deposition. Journal of Microelectromechanical Systems, 1996. 5(1): p. 24-32.
130. El-Giar, E.M. and D.J. Thomson. Localized electrochemical plating of interconnectors for microelectronics. in IEEE WESCANEX 97 Communications, Power and Computing. Conference Proceedings. 1997.
131. 李棟樑, 陽極導引微電鍍之機構及控制研究, in 機械工程研究所. 2007, 國立中央大學: 桃園縣. p. 118.
132. 李昱, 以微電鍍法製備鎳鐵合金三維微結構之研究, in 機械工程學系. 2018, 國立中央大學: 桃園縣. p. 121.
133. 李盈穀, 以微電鍍法製備鋅銅合金微結構, in 機械工程學系. 2020, 國立中央大學: 桃園縣. p. 89.
134. 程憲威, 以微電鍍法製備鎳鉬合金微柱並探討其在1.0 M KOH溶液中電解產氫之性能, in 機械工程學系. 2022, 國立中央大學: 桃園縣. p. 206.
135. 賴威全, 硫脲及其衍生物添加對微陽極導引電鍍法製備銅微柱之結構及特性影響研究, in 機械工程學系. 2022, 國立中央大學: 桃園縣. p. 128.
136. 王俊堯, 在焦磷酸鍍液中製備銅-鋅薄膜之平板電鍍法與製備合金微柱之微陽極導引電鍍法之比較, in 機械工程學系. 2022, 國立中央大學: 桃園縣. p. 163.
137. Luman. 17.3 Standard Reduction Potentials. Chemistry 2020.
138. Maier, V., A. Hohenwarter, R. Pippan, and D. Kiener, Thermally activated deformation processes in body-centered cubic Cr – How microstructure influences strain-rate sensitivity. Scripta Materialia, 2015. 106: p. 42-45.
139. Halliday, F., D. Armstrong, J. Murphy, and S. Roberts, Nanoindentation and Micromechanical Testing of Iron-Chromium Alloys Implanted with Iron Ions. Advanced Materials Research, 2009. 59: p. 304-307.
140. Dong, C., X. Yuan, X. Wang, X. Liu, W. Dong, R. Wang, Y. Duan, and F. Huang, Rational design of cobalt–chromium layered double hydroxide as a highly efficient electrocatalyst for water oxidation. Journal of Materials Chemistry A, 2016. 4(29): p. 11292-11298.
141. Li, M., Y. Xiong, X. Liu, X. Bo, Y. Zhang, C. Han, and L. Guo, Facile synthesis of electrospun MFe2O4 (M = Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction. Nanoscale, 2015. 7(19): p. 8920-8930.
142. Al-Mamun, M., X. Su, H. Zhang, H. Yin, P. Liu, H. Yang, D. Wang, Z. Tang, Y. Wang, and H. Zhao, Strongly Coupled CoCr2O4/Carbon Nanosheets as High Performance Electrocatalysts for Oxygen Evolution Reaction. Small, 2016. 12(21): p. 2866-2871.
143. Ullah, N., W. Zhao, X. Lu, C.J. Oluigbo, S.A. Shah, M. Zhang, J. Xie, and Y. Xu, In situ growth of M-MO (M = Ni, Co) in 3D graphene as a competent bifunctional electrocatalyst for OER and HER. Electrochimica Acta, 2019. 298: p. 163-171.
144. Zhong, W., Z. Lin, S. Feng, D. Wang, S. Shen, Q. Zhang, L. Gu, Z. Wang, and B. Fang, Improved oxygen evolution activity of IrO2 by in situ engineering of an ultra-small Ir sphere shell utilizing a pulsed laser. Nanoscale, 2019. 11(10): p. 4407-4413.
145. Mattos-Costa, F.I., P. de Lima-Neto, S.A.S. Machado, and L.A. Avaca, Characterisation of surfaces modified by sol-gel derived RuxIr1−xO2 coatings for oxygen evolution in acid medium. Electrochimica Acta, 1998. 44(8): p. 1515-1523.
146. Roser, H.R.a.M. Global carban dioxide emissions from fossil fuels and industry. CO2 and GHG Emissions 2023.
147. H. Ritch, M.R., P. Rosado. Renewable energy generation. Energy 2022.
148. Chen, F.-Y., Z.-Y. Wu, Z. Adler, and H. Wang, Stability challenges of electrocatalytic oxygen evolution reaction: From mechanistic understanding to reactor design. Joule, 2021. 5(7): p. 1704-1731.
149. Mohammed-Ibrahim, J., A review on NiFe-based electrocatalysts for efficient alkaline oxygen evolution reaction. Journal of Power Sources, 2020. 448: p. 227375.
指導教授 林景崎(Jing-Chie Lin) 審核日期 2023-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明