博碩士論文 110329009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.145.162.12
姓名 黃兆宇(Chao-Yu Huang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 多孔隙鎂基非晶質合金複材 之製作及其性質之分析
(Fabrication and properties characterization of porous Mg-based amorphous composit鄭)
相關論文
★ (Zr48Cu36Al8Ag8)99.25Si0.75複材高溫塑性行為之研究★ 具鉭顆粒散布強化之鐵基金屬玻璃複材的合成及其性質之研究
★ 鋯摻雜對SrCe1-xZrxO3-δ (0.0≦x≦0.5) 氫傳輸透膜微結構與性質影響之研究★ 適用於生物駐植物之無毒鈦基金屬玻璃之合金設計
★ 利用急冷旋鑄及真空熱壓製備Zn4Sb3奈米/微米晶塊材之熱電性質與機械性質研究★ 鐵顆粒添加對鎂鋅鈣非晶質合金熱性質及機械性質影響之研究
★ Ba0.8Sr0.2Ce0.8-x-yZryInxY0.2O3-δ(x=0.05,0.1 y=0,0.1)固態氧化物燃料電池電解質材料燒 結能力、微結構與其導電性質之研究★ 鋯基與鈦基金屬玻璃薄膜應用於7075-T6航空用鋁合金疲勞性質改善之研究
★ 添加鉭對鋯鋁鈷塊狀非晶質合金機械性質影響之研究★ 鐵基塊狀金屬玻璃熱塑成形性之研究
★ 鋯基金屬玻璃薄膜對鎂基塊狀金屬玻璃複材之機械性質與抗腐蝕性提升之研究★ 微量鉭顆粒添加對鋯-銅-鋁-鈷塊狀非晶質合金鋯銅析出相的演變及機械性質之影響
★ 雷射積層製造用鐵基金屬玻璃粉末與其工件性質之研究★ 鐵基金屬玻璃破裂韌性提升 及其積層製造用粉體製作之研究
★ 質子傳輸型固態氧化物燃料電池之陽極支撐電解質材料製作及其性能之研究★ 生物相容性鈦基金屬玻璃合金粉末用於積層製造之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-8-31以後開放)
摘要(中) 多孔鎂基非晶質合金之機械性質和非晶特性皆適合利用於製造生物自然降解之骨科植入物。本研究利用真空熱壓製程將鎂基非晶質粉體加入不同體積比例的銀和空間支架顆粒的混合物製作成具有孔隙的鎂基非晶質合金多孔複材,藉由控制銀比例和氯化鈉空間支架顆粒的體積分率,得到孔隙率 13.5 %~33.4 %的孔隙濃度梯度試片,其孔隙尺寸在 100-250 µm 之間,與人體的骨骼結構相似,而添加適當顆粒大小、適當體積濃度之銀顆粒,不僅有助於提升抗菌性,也改善試片整體的機械性質。
利用 DSC 示差掃描熱分析儀和 X 光繞射儀對熱壓試片進行分析,可得知在熱壓過程中,粉體轉化為塊材時,添加的銀沒有跟鎂基非晶質基材進行反應,非晶塊材仍然保有非晶質合金之特性。因此可利用和鎂基非晶質基材熱壓製程相似之熱壓參數進行銀參雜比例之調整,而得到最好的銀參雜比例為 2 %體積比例。最佳的銀添加比例可使非晶塊材的抗壓強度由無添加銀的 216 MPa 提升到 502MPa,伸長量自 3.23 提升到 7.22 %。
清除空間支架比例後的機械性質,對於多孔塊材來說,銀添加的熱壓試片對孔隙的敏感性較高,因此在多孔非晶材料的機械性質表現,無添加銀的多孔材機械性質優於添加銀的多孔材,此結果為銀顆粒和鎂基非晶質合金基材結合性不佳,在清除空間支架顆粒時銀顆粒脫落所導致。然而在孔隙濃度梯度試片中,孔隙材中間緻密之添加銀的鎂基非晶質塊材夾心與未添加銀的非晶塊材相比具有較佳的機械性質,可為整體提供更好的支撐,其楊氏係數也更接近於理想骨骼。因此添加銀的孔隙濃度梯度試片表現較佳。可綜合調整空間支架顆粒的比例和銀參雜之體積比例共同控制塊材之機械性質而得到理想的人體骨骼植入材料。
摘要(英) The porous Mg-based amorphous composite is suitable for making biodegradable orthopedic implants because of its mechanical properties and amorphous structure. The porous Mg-based amorphous composite dispersed with different volume ratios of silver were prepared by a spacer method. By controlling the silver ratio and the volume fraction of sodium chloride (NaCl) particles as a spacer, the porosity gradient samples with porosity of 13.5% to 33.4% were obtained, and the pore size ranged from 100 to 250 µm, similar to the bone structure of the human body. Dispersed silver particles into matrix can also enhance mechanical properties and antibacterial.
Through the analysis of differential scanning calorimetry (DSC) and X-ray diffraction (XRD) for the samples after hot pressed, it was found that there is no reaction between silver particles and Mg-base matrix, and the Mg-base matrix can maintain as an amorphous structure. Among of all, the best mechanical properties of the Mg-base amorphous composite were occurred at the addition of 2% volume fraction of silver particle. The compressive strength can be reach up to 502 MPa and with the elongation 7.22%.
In the other hand, the Mg-based amorphous alloy added with Ag particles was also used NaCl particles for the spacer to fabricate the gradient sample which is similar to the human bone. It can be found that the dense Mg-based amorphous alloy added with Ag particles present outstanding mechanical properties. However, the porous Mg-based amorphous composite sample added with Ag particle presents noticeable decrease in strength. This is suggested that the Ag particle would be pooled off during the leaching process of removing the spacer. With the material is fabricated as the porous samples,the silver particles are easily to fall which reduce the strength of the alloy.
關鍵字(中) ★ 銀顆粒
★ 鎂基非晶質合金多孔複材
★ 空間支架顆粒
關鍵字(英) ★ silver particles
★ Mg-based amorphous composite
★ space holder particles
論文目次 摘要 i
ABSTRACT ii
總目錄 iii
表目錄 vi
圖目錄 vii
1 第一章 緒論 1
1-1 前言 1
1-2 研究目的 2
2 第二章 文獻回顧 4
2-1 非晶質合金之概述 4
2-2 非晶質合金之發展歷程 4
2-3 非晶質合金之製程 6
2-4 非晶質合金之熱力學 9
2-4-1 非晶質合金Tg、Trg、ΔTx 9
2-4-2 γ 值與 γm值 10
2-5 非晶質合金之特性 11
2-5-1 非晶質合金之歸納法則 11
2-5-2 機械性質 12
2-5-3 抗腐蝕性與抗菌性 13
2-5-4 電磁特性 13
2-6 非晶質合金的熱塑性成型 14
2-6-1 非晶質合金成型能力評估 14
2-6-2 熱塑性成型技術 15
2-7 多孔非晶質合金 16
2-8 Mg-Zn-Ca非晶質合金複材之研究 17
3 第三章 實驗方法與步驟 30
3-1 鎂基非晶質合金製作 30
3-1-1 鎂基金屬塊材原料配製 30
3-1-2 鎂基金屬塊材製作 30
3-1-3 鎂基非晶質合金薄帶製作 31
3-2 熱性質分析 32
3-3 多孔隙鎂基非晶質合金熱壓縮試片製作 32
3-3-1 鎂基非晶質合金粉體製作與銀、空間支架顆粒之混合 32
3-3-2 熱壓縮試片製作 33
3-3-3 真實孔隙率 33
3-4 微結構分析 34
3-4-1 掃描式電子顯微鏡與光學顯微鏡 34
3-4-2 X光繞射分析 34
3-5 機械性質測試 34
3-5-1 硬度測試 34
3-5-2 破壞韌性分析 35
3-5-3 壓縮測試 35
4 第四章 結果與討論 46
4-1 參雜不同體積比例的銀及其熱壓成形性、機械性質 46
4-2 非恆溫熱性質分析 46
4-3 空間支架去除與真實孔隙率之分析 47
4-3-1 空間支架顆粒的去除 47
4-3-2 X光繞射分析 48
4-3-3 真實孔隙率 48
4-4 低孔隙、多孔隙和孔隙濃度梯度試片性質分析 48
4-4-1 硬度及破裂韌性測試 48
4-4-2 壓縮測試 49
4-4-3 試片OM、SEM表面觀察與EDS成分分析 49
4-4-4 楊氏係數比較 50
1 第五章 結論 67
2 參考文獻 68


表目錄
表 2 1非晶質合金的性能及其對應之應用領域 20
表 2 2 塊狀非晶質合金複合材料的機械性質[48] 21
表 2 3MgxZn95-xCa5經過DSC分析後數據[63] 22
表 4 1添加不同銀(vol%)與不同熱壓壓力試片成形能力 52
表 4 2鎂基非晶質合金粉體不同升溫速率下的Tg、Tx和ΔTx(過冷液態區)的值 52
表 4 3 理想孔隙率與真實孔隙率 52
表 4 4多孔隙(10vol%、20vol%、30vol%)塊材之機械性質比較 53
表 4 5孔隙濃度(10%-0%-10%、20%-0%-20%、30%-0%-30%)試片機械性質比較 53
表 4 6 鎂基非晶質合金(+2%volAg)之EDS分析 53
表 4 7銀添加量(vol%)對鎂基非晶質合金塊材的楊氏係數之變化 54
表 4 8 多孔材料的孔隙率對楊氏係數之影響(Ag0 vs Ag2) 54
表 4 9孔隙濃度材料的孔隙率對楊氏係數之影響(Ag0 vs Ag2) 54

圖目錄
圖 1 1 鎂鋅鈣非晶質合金形成能力之組成相圖[6] 3
圖 1 2 銀抗菌機制[7] 3
圖 2 1 材料原子排列之結構:(a)結晶材料 (b)非晶質材料[6] 23
圖 2 2 結晶與非結晶材料X-ray繞射比較圖[8] 23
圖 2 3 非晶與結晶材料在拉伸強度(左圖)與硬度(右圖)的比較 [11] 24
圖 2 4 結晶材料(a)和非結晶材料(b)抵抗腐蝕示意圖[27] 24
圖 2 5實驗歸納法概念圖[27] 25
圖 2 6 雙輪連續急冷法[35] 25
圖 2 7 激冷溶液旋噴法示意圖[36] 26
圖 2 8 平面流鑄法[37] 26
圖 2 9 金屬液急冷之體積對溫度變化線[38] 27
圖 2 10 臨界冷卻速率與玻璃形成能力圖[11] 27
圖 2 11不同溫度對不同材料黏度的影響[48] 28
圖 2 12非晶質合金的典型溫度-時間-轉變 (TTT) 曲線[48] 28
圖 2 13熱壓縮示意圖 29
圖 2 14開孔和閉孔的多孔材料[61] 29
圖 3 1 鎂、鋅及鈣之原料外觀 37
圖 3 2 高週波電源供應器 37
圖 3 3真空感應熔煉爐(傾倒式) 38
圖 3 4高週波熔煉感應爐(附銅輪)外觀 38
圖 3 5示差掃描熱分析儀(DSC, Mettler Toledo DSC1) 39
圖 3 6快速球磨機(Mixer Mill MM 400-RETSCH) 39
圖 3 7氬氣氣氛手套箱 40
圖 3 8桌上型球磨機 40
圖 3 9真空熱壓機 41
圖 3 10鎂基非晶質合金熱壓縮試片 42
圖 3 11阿基米德測量設備 42
圖 3 12掃描式電子顯微鏡 43
圖 3 13 光學顯微鏡(OM,Leica S9D/DMC2900) 43
圖 3 14 X光繞射儀(XRD, D2 PHASER, Bruker) 43
圖 3 15微小及維克氏硬度試驗機 44
圖 3 16壓痕及裂縫圖 44
圖 3 17慢速切割機(ISOMEC, BUEHLER) 45
圖 3 18萬能材料試驗機(HUNG TA Instrument HT-9102) 45
圖 4 1試片破裂圖 55
圖 4 2在非晶基材中添加不同銀體積含量XRD圖 56
圖 4 3添加不同體積比例的銀之鎂基非晶質合金壓縮性質比較 56
圖 4 4 鎂基非晶質合金粉體在不同升溫速率下(10-40°C/min)的熱性質分析 57
圖 4 5真實熱性質的線性函數(升溫速率為 0 °C /min) 58
圖 4 6等溫退火溫度與孕核時間的關係圖 58
圖 4 7利用不同熱壓條件參數製作的熱壓試片之熱性質分析 59
圖 4 8銀添加對鎂基非晶質合金之影響(Tg、TX) 59
圖 4 9 由DSC得到之Tg圖 60
圖 4 10由DSC得到之Tx圖 60
圖 4 11熱壓試片尚未清除NaCl空間支架顆粒之XRD圖 61
圖 4 12清除空間支架顆粒前後比較XRD圖 61
圖 4 13不同銀體積添加比例之斷裂韌性比較 62
圖 4 14多孔隙塊材10 %、20 %、30 % 之Ag2熱壓縮試片壓縮性質比較 62
圖 4 15多孔隙塊材有無添加Ag對壓縮性質影響之比較(10 %孔隙) 63
圖 4 16多孔隙塊材有無添加銀之壓縮性質比較(Ag2 vs Ag0,10 %-30 %) 63
圖 4 17孔隙濃度提度塊材有無添加銀壓縮性質比較 64
圖 4 18 Ag2(左)和Ag2.5(右)表面孔洞比較 64
圖 4 19未研磨空間支架顆粒產生之孔徑 65
圖 4 20研磨空間支架顆粒產生之孔徑 65
圖 4 21利用圖形運算程式計算Ag在熱壓試片表面之截面面積 66
參考文獻 [1] D. F. Williams, “Implantable prostheses”, Physics in Medicine & Biology, Vol. 25, 1980, pp. 611-636.
[2] Mark P. Staiger, Alexis M. Pietak, Jerawala Huadmai and George Dias, “Magnesium and its alloy as orthopedic biomaterials: A review”, Biomaterials, Vol. 27, 2006, pp. 1728-1734.
[3] Y. Xin, K. Huo, H. Tao, G. Tang and Paul K. Chu, “Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment”, Acta Biomaterialia, Vol. 4, 2008, pp. 2008-2018.
[4] D. M. Miskovic, K. Pohl, N. Birbilis, K. J. Laws and M. Ferry, “Examining the elemental contribution towards the biodegradation of Mg-Zn-Ca ternary metallic glasses”, Journal of Materials Chemistry B, Vol. 4, 2016, pp. 2679-2690.
[5] P.C.Wong,“Development of biodegradable Mg-Zn-Ca metallic glass for the application of orthopedic implant”, unpublished doctoral dissertation, National Yang-Ming University, 2017.
[6] T. B. Matias, V. Roche, R. P. Nogueira, G. H. Asato, C. S. Kiminami, C. Bolfarini, W. J. Botta and A. M. Jorge, “Mg-Zn-Ca amorphous alloys for application as temporary implant: Effect of Zn content of the mechanical and corrosion properties”, Materials and Design, Vol. 110, 2016, pp. 188-195.
[7] Benjamin Le Ouay, Francesco Stellacci,“Antibacterial activity of silver nanoparticles: A surface science insight”,Nanotoday, Vol. 10,2015,pp339-354.
[8] S. Kujala, J. Ryhänen, A. Danilov, and J. Tuukkanen, "Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel–titanium bone graft substitute," Biomaterials, vol. 24, no. 25, 2003, pp. 4691-4697.
[9] 吳學陞,新興材料-塊狀非晶質合金金屬材料,工業材料,第 149 期,1999年。
[10] A. C. Lund and Christopher A. Schuh, “Topological and chemical arrangement of binary alloys during severe deformation”, Journal of Applied Physics, Vol. 95, 2004, pp. 4815-4822.
[11] A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys”, Acta Materialia, Vol. 48, 2000, pp. 279-306.
[12] J. Kramer, “Amorphous Ferromagnetic in Iron-Carbon-Phosphorus Alloys”, J. Appl. Phys., vol. 19, 1934, pp. 37-39.
[13] A. Brenner, D. E. Couch, E. K. Williams, J. Res. Natn. Bur. Stand, vol. 44, 1950, pp.109-111
[14] W. Klement, R. Willens and P. Duwez, “Non-crystalline Structure in Solidified Gold-Silicon Alloys”, Nature Materials, vol. 187, 1960, pp. 869-870.
[15] D. Turnbull, “Phase Changes”, Solid State Phys., vol. 3, 1956, pp.225.
[16] D. Turnbull, “Amorphous solid formation and interstitial solution behavior in metallic alloy system”, J. Phys., vol. 35, 1974, pp. 1-10.
[17] D. R. Uhlmann, J. F. Hays and Turnbull, “The effect of high pressure on crystallization kinetics with special reference to fused silica”, J. Phy. Chem. Glasses, vol. 7, 1966, pp. 159.
[18] H. A. Davies, “The formation of metallic glass”, J. Phys. Chem. Glasses, vol. 17, 1976, pp. 159-173.
[19] H. S. Chen and C. E. Miller, “A rapid quenching technique for the preparation of thin uniform films of amorphous solids”, Review of Scientific Instruments, Vol. 41, 1970, pp. 1237-1238.
[20] H. H. Liebermann and C. D. Graham, “Production of amorphous alloy ribbons and effects of apparatus parameters on ribbon dimensions”, IEEE Transactions on Magnetics, Vol. 6, 1976, pp. 921-923.
[21] M. C. Narasimhan, “Continuous casting method for metallic strips”, United states patent and trademark office certificate of correction, 1980.
[22] A. Inoue, T. Zhang and T. Masumoto, “Al–La–Ni amorphous alloys with a wide supercooled liquid region”, Materials Transactions, JIM, Vol. 30, 1989, pp. 965- 972.
[23] T. Zhang, A. Inoue and T. Masumoto, “Amorphous Zr-Al-TM (TM = Co, Ni, Cu) alloys with significant supercooled liquid region of over 100 K”, Materials Transactions, JIM, Vol. 32, 1991, pp. 1005-1010.
[24] A. Inoue, A. Kato, T. Zhang, S. G. Kim and T. Masumoto, “Mg-Cu-Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method”, Materials Transactions, JIM, Vol. 32, 1991, pp. 609-616.
[25] A. Inoue, “High strength bulk amorphous alloys with low critical cooling rates (overview)”, Materials Transactions, JIM, Vol. 36, 1995, pp. 866-875
[26] Y. K. Xu and J. Xu, “Ceramics particulate reinforced Mg65Cu20Zn5Y10 bulk metallic glass composites”, Scr. Mater., vol. 49, 2003, pp. 843-848.
[27] H. Ma, L. L. Shi, J. Xu, Y. Li and E. Ma, “Discovering inch-diameter metallic glasses in three-dimensional composition space”, Applied Physics Letters, Vol. 87, 2005,pp181-195.
[28] D. G. Pan, H. F. Zhang, A. M. Wang and Z. Q. Hu, “Enhanced plasticity in Mgbased bulk metallic glass composite reinforced with ductile Nb particles”, Applied Physics Letters, Vol. 89.26,2006,261904
[29] B. Zberg, Peter J. Uggowitzer and Jorg F. Loffler, “MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants”, Nature materials, Vol. 8, 2009, pp. 887-891.
[30] R. W. Cahn, P. Hassen and E.J. Kramer, Materials Science and Technology, Vol. 9, New York, USA, 1991, pp.90-92.
[31] W. Paul, G. A. N. Connell and R. J. Temkin, “Amorphous germanium I. A model for the structural and optical properties”, Advances in Physics, Vol. 22, 1973, pp. 531-580.
[32] K. L. Chapra, “Thin film phenomena”, McGraw-Hill, New York, 1969, pp.850-852.
[33] A.Pekerand W. L. Johnson, “A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5”, Applied Physics Letters, Vol. 63, 1993, pp. 2342-2344.
[34] P. C. Wong, “Mechanical properties of magnesium based bulk meallic glass composites with the Ti particles”, unpublished Master′s thesis, National Central University, 2012.
[35] M. S. Suei, “Influences of Ta and Ti-6Al-V particle Additions on the Mechanical Properties of MgZnCa-Based Amorphous Alloy”, unpublished Master′s thesis, National Central University, 2015.
[36] Z. Zhang, F. Wu, G. He and J. Eckert, “Mechanical properties, damage and fracture mechanisms of bulk metallic glass materials”, Journal of Materials Science and Technology, Vol. 23, 2007, pp. 747-767.
[37] 許樹恩、吳泰伯著,X 光繞射原理與材料結構分析,中國材料科學學會,1996 年。
[38] A. S. Argon, “Plastic deformation in metallic glasses”, Acta Metallurgica, Vol. 27, 1979, pp. 47-58.
[39] F. Spaepen, “A microscopic mechanism for steady state inhomogeneous flow in metallic glasses”, Acta Metallurgica, Vol. 25, 1977, pp. 407-415.
[40] A. Inoue, “Bulk amorphous alloys practical characteristics and applications, institute for material research”, Tohoku University, Sendai, Japan, 1999, pp.307- 314.
[41] 顧宜,複合材料,新文京開發出版公司,1992 年。
[42] 許樹恩、吳泰伯著,X 光繞射原理與材料結構分析,中國材料科學學會,1996 年。
[43] A. S. Argon, “Plastic deformation in metallic glasses”, Acta Metallurgica, Vol. 27, 1979, pp. 47-58.
[44] F. Spaepen, “A microscopic mechanism for steady state inhomogeneous flow in metallic glasses”, Acta Metallurgica, Vol. 25, 1977, pp. 407-415.
[45] A. Inoue, “Bulk amorphous alloys practical characteristics and applications, institute for material research”, Tohoku University, Sendai, Japan, 1999, pp.307- 314.
[46] 陳憲緯,鋯-銅基非晶質薄膜製備與抗菌性質研究,2010年
[47] C. W. Chu, J. S. C. Jang, S. M. Chiu and J. P. Chu, “Study of the characteristics and corrosion behavior for the Zr-based metallic glass thin film fabricated by pulse magnetron sputtering process”, Thin Solid Films, Vol. 517, 2009, pp. 4930-4933.
[48] X. H. Du, C. Huang, C.T. Liu and Z.P. Liu, “New criterion of glass forming ability for bulk metallic glasses”, Journal of Applied Physics, Vol. 101, 2007, pp. 086-108.
[49] R. Busch, J. Schroers, W. H. Wang, “Thermodynamics and kinetics of bulk metallic glass”, MRS Bulletin, Vol. 32, 2007, pp. 620-623.
[50] M. Takagi, Y. Kawamura, T. Imura, J. Nishigaki, H. Saka, “Mechanical properties of amorphous alloy compacts prepared by different consolidation techniques”, Metallic Glass, Journal of Materials Science, Vol. 27, 1992, pp. 817-824.
[51] A. Kato, T. Suganuma, H. Horikiri, Y. Kawamura, A. Inoue, T. Masumoto, “Consolidation and mechanical properties of atomized Mg-based amorphous powders”, Materials Science and Engineering A, Vol. 179 ,1994, pp. 112-117.
[52] Y. Kawamura, H. Kato, A. Inoue, T. Masumoto, “Full strength compacts by extrusion of glassy metal powder at the supercooled liquid state”, Applied Physics Letters, Vol. 67,1995, pp. 2008-2010.
[53] Y. Kawamura, H. Kato, A. Inoue, T. Masumoto, “Effects of extrusion conditions on mechanical properties in Zr-Al-Ni-Cu glassy powder compacts”, Materials Science and Engineering A, Vol. 219 ,1996, pp. 39-43.
[54] Y. Kawamura, H. Kato, A. Inoue, T. Masumoto, “Workability of the supercooled liquid in the Zr65Al10Ni10Cu15 bulk metallic glass”, Acta Materialia, Vol. 46 ,1998, pp. 253-263.
[55] D. Sordelet, E. Rozhkova, P. Huang, P. Wheelock, M. Besser, M. Kramer, M. CalvoDahlborg, U. Dahlborg, “Synthesis of Cu47Ti34Zr11Ni8 bulk metallic glass by warm extrusion of gas atomized powders”, Journal of Materials Research, Vol. 17 ,2002, pp. 186-198.
[56] S. Y. Lee, T. S. Kim, J. K. Lee, H. J. Kim, D. Kim, J. Bae, “Effect of powder size on the consolidation of gas atomized Cu54Ni6Zr22Ti18 amorphous powders”, Intermetallics, Vol. 14 ,2006, pp. 1000-1004.
[57] R. Martinez, G. Kumar, J. Schroers, “Hot rolling of bulk metallic glass in its supercooled liquid region”, Scripta Materialia, Vol. 59 ,2008, pp. 187-190.
[58] M. H. Lee, J. S. Park, J. H. Kim, W. T. Kim, D. H. Kim, “Synthesis of bulk amorphous alloy and composites by warm rolling process”, Materials Letters, Vol. 59 ,2005, pp. 1042-1045.
[59] H. J. Kim, J. K. Lee, T. S. Kim, J. C. Bae, E. S. Park, M. Y. Huh, D. H. Kim, “Mechanical behavior of Cu54Ni6Zr22Ti18 bulk amorphous alloy during multi-pass warm rolling”, Materials Science and Engineering A, Vol. 449-451 ,2007, pp. 929- 933.
[60] J. Schroers, “Processing of bulk metallic glass, Advanced Materials”, Vol.22 ,2010, pp. 1566-1597.
[61] B. Świeczko-Żurek, “Porous Materials Used as Inserted Bone Implants”, Advanced Materials Science, vol. 9, no. 2, 2009.pp.51-60.
[62] G. F. Ma et al., “Increased collagen degradation around loosened total hip replacement implants”, Arthritis & Rheumatology, vol. 54, no. 9 ,2006, pp. 2928– 2933.
[63] 吳哲瑋,鐵顆粒添加對鎂鋅鈣非晶質合金熱性質及機械性質影響之研究,2014年
[64] A. Inoue, B. L. Shen, H. Koshiba, H. Kato and A. R. Yavari, “Cobalt-Based Bulk Glassy Alloy with Ultrahigh Strength and Soft Magnetic Properties”, Nature Material., vol.2, 2003, pp.661.
[65] P. C. Wong, “Mechanical properties of magnesium based bulk meallic glass composites with the Ti particles”, unpublished Master′s thesis, National Central University, 2012.
[66] 粘益原,添加多孔鉬與 Ti-6Al-4V顆粒對鎂鋅鈣塊狀非晶質合金複材熱性質及機械性質之研究,2021年
[67] 沈朝昱,多孔隙鎂基塊狀非晶質合金之製作及其性質之研究,2022年
[68] C. Huanget ,"Electrochemical and biocompatibility response of newly developed TiZr-based metallic glasses," Materials Science and Engineering: C, vol. 43 ,2014, pp. 343-349.
[69] M. Calin,esigning biocompatible Ti-based metallic glasses for implant applications," Materials Science and Engineering: C, vol. 33, no. 2 ,2013, pp. 875- 883
指導教授 鄭憲清(Jason.S.C.Jang) 審核日期 2023-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明