博碩士論文 110329017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:56 、訪客IP:3.145.73.79
姓名 楊文辰(Wen-Chen Ynag)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 微量鉬與熱處理對Fe-2Ni-0.5C多孔合金微結構及機械性質之影響
(Effect of trace Mo and heat treatment on the microstructures and mechanical properties of Fe-2Ni-0.5C metal foams)
相關論文
★ 元素揮發對Mg-Ni-Li合金儲放氫特性之影響★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響
★ LaNi5對Mg2Ni合金電極性質之影響★ 固溶處理之冷卻速率對SP-700鈦合金微結構與機械性質之影響
★ Pb含量與熱處理對AgPb18+xSbTe20合金熱電性質影響之探討★ 鈧對Al-7Si-0.6Mg合金機械性質影響
★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響★ 高壓氫壓縮機用之儲氫合金開發
★ 固溶處裡對SP-700鈦合金微結構及機械性質之影響★ 微量鋯與安定化退火對Al-4.7Mg-0.75Mn 合金腐蝕與機械性質之影響
★ 微量Ni對Al-4.5Cu-0.3Mg-0.15Ti合金熱穩定性之影響★ 微量Zr與冷加工對Al-4.7Zn-1.6Mg合金淬火敏感性之影響
★ 微量Zr和Sc與均質化對Al-4.5Zn-1.5Mg合金機械性質與再結晶之影響★ 高含量Ti、B對A201-T7鋁合金熱裂性、微結構與機械性質的影響
★ 改良劑(鍶、銻)與熱處理對Al-11Si-3Cu-0.5Mg合金微結構及磨耗性質之影響★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究以無壓式漿料多孔燒結成型技術,成功製備出孔徑、與孔隙率分別為1.8mm、與53%之多孔Fe-2Ni-0.5C(-0.5Mo)合金;藉由微結構分析、與機械性質試驗,探討Mo(0.5wt%)與(回火、深冷)熱處理對微結構和機械性質的影響。結果顯示,針對未含Mo、且經深冷處理之多孔合金,相較於未經深冷處理者,於低溫(250°C)回火時,可析出更多之過渡碳化物(ε/η),更能有效提升回火的壓縮性質。且在高溫(500°C)回火,其壓縮特性雖較低溫回火為低,但相較於未經深冷處理之多孔合金,其回火球狀雪明碳鐵較為細化、且密集,其壓縮平台應力、與能量吸收值,都明顯高於未經深冷處理之合金約30%。
而經淬火後含Mo之多孔合金,於中溫(400°C)下回火,其微結構仍保有極高硬度之回火麻田散鐵,其抗壓平台應力(817MPa)與單位能量吸收值(114J/g),均係目前所蒐集之鐵基多孔合金文獻中最高者。且含Mo、相比於未含Mo之多孔合金,在相同的熱處理狀態下,其抗壓平台應力與單位能量吸收值均較高,顯示Mo的添加,可提供較強的壓縮性能。
摘要(英) This study focuses on the preparation of Fe-2Ni-0.5C(-0.5Mo) metal foams using a pressureless powder space holder technique. The fabricated metal foams exhibited pore size of 1.8mm and a porosity of 53%. Through microstructure analysis and mechanical properties testing, the effects of Mo(0.5wt%) addition and heat treatment (tempering and cryogenic) on the microstructure and mechanical properties were investigated. The results showed that for the porous alloy without Mo and subjected to cryogenic treatment, compared to the untreated samples, a higher amount of transition carbides (ε/η) could precipitate during low-temperature tempering (250°C), leading to improved compressive properties. Additionally, at high-temperature tempering (500°C), although the compressive characteristics were lower than those of low-temperature tempering, the carbide precipitates were finer and denser in the porous alloy with cryogenic treatment compared to the untreated alloy. The compressive plateau stress and energy absorption values were significantly increased by approximately 30% compared to the alloy without cryogenic treatment.
Furthermore, the metal foams containing Mo after quenching exhibited retained high hardness martensite during tempering at intermediate temperature (400°C). The compressive plateau stress (817 MPa) and energy absorption capacity (114 J/g) achieved in this condition were the highest among the collected literature on iron-based metal foams. Moreover, the addition of Mo resulted in higher compressive plateau stress and energy absorption capacity compared to the alloy without Mo under the same heat treatment conditions, indicating that Mo addition enhances the compressive performance.
關鍵字(中) ★ 多孔合金
★ Fe-Ni-C-Mo合金
★ 抗壓平台應力
★ 單位能量吸收
★ 深冷處理
關鍵字(英) ★ metal foams
★ Fe-Ni-C-Mo alloy
★ compressive plateau stress
★ energy absorption capacity
★ cryogenic treatment
論文目次 摘要 iv
Abstract v
謝誌 vi
目錄 viii
圖目錄 xi
表目錄 xv
第一章 前言與文獻回顧 1
1.1 前言 1
1.2 多孔金屬簡介 3
1.3 多孔金屬的製備 4
1.3.1 壓力滲透鑄造法 5
1.3.2 熔融發泡鑄造法 6
1.3.3 傳統粉末冶金法 7
1.3.4 無壓式粉末冶金法 8
1.4 多孔金屬之機械性質 9
1.5 多孔金屬抗彈之應用 13
1.6 Fe-2Ni-0.5C(-0.5Mo)低合金鋼簡介 14
1.7 Fe-2Ni-0.5C(-0.5Mo)低合金鋼之熱處理 15
1.8 合金元素對Fe-2Ni-0.5C-(0.5Mo)低合金鋼的影響 16
1.8.1 碳對Fe-2Ni-0.5C-(0.5Mo)低合金鋼的影響 16
1.8.2 鎳對Fe-2Ni-0.5C(-0.5Mo)低合金鋼的影響 17
1.8.3 鉬對Fe-2Ni-0.5C(-0.5Mo)低合金鋼的影響 18
1.9 羰基鐵粉簡介 19
第二章 實驗步驟 21
2.1 淬火、深冷、與回火處理 23
2.2 X光繞射分析(X-ray diffraction) 24
2.3 微結構分析與觀察 25
2.3.1 光學顯微鏡(Optical microscopy, OM) 25
2.3.2 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 25
2.3.3 電子背向散射繞射(Electron Back-Scattered Diffraction, EBSD) 25
2.3.4 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 26
2.3.5 差示掃描量熱法(Differential Scanning Calorimetry, DSC) 26
2.4 硬度試驗 26
2.5 壓縮試驗 27
第三章 結果與討論 28
3.1 多孔合金之脫碳反應 28
3.1.1 脫碳反應(脫脂、與去除PS球)及其防治 28
3.1.2 脫碳反應(氫氣氣氛中的燒結之脫碳) 29
3.1.3 業界燒結製程 29
3.2 Fe-2Ni-0.5C多孔合金 32
3.2.1 合金微結構 32
3.2.2 合金EBSD分析 35
3.2.3 合金X光繞射分析 36
3.3 Fe-2Ni-0.5C-0.5Mo多孔合金 37
3.3.1 合金微結構 37
3.3.2 合金X光繞射分析 41
3.4 DSC分析 42
3.5 多孔合金(壓縮)機械性質 43
3.6 多孔合金壓縮性質比較 53
3.7 未來工作(初步成果) 54
第四章 結論 56
第五章 參考文獻 58
參考文獻 [ASTM1] ASTM E92-17, “Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials”.(2017)

[ASTM2] ASTM E9-19, “Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature”.(2019)

[ASM1] G. F. V. Voort, “Atlas of Time-Temperature Diagrams for Irons and Steels”, ASM International, pp.26.(1991)

[ASM2] T. B. Massalski, H. Okamoto, P. R. Subramanian, L. Kacprzak, “Binary Alloy Phase Diagrams”, ASM International.(1990)

[AVI] M. G. Avila, M. Portanova, A. Rabiei, “Ballistic Performance of composite metal foams”, Composite Structure, Vol.125, pp.202~211.(2015)

[BAK] H. I. Bakan, “A Novel Water Leaching and Sintering Process for Manufacturing Highly Porous Stainless Steel”, Scripta Materialia, Vol.55, pp.203~206.(2006)

[BAN] J. Banhart, F. García-Moreno, K. Heim, H. W. Seeliger, “Light-Weighting in Transportation and Defence Using Aluminium Foam Sandwich Structures”, Light Weighting for Defense, Aerospace, and Transportation, Springer, pp.61-72.(2019)

[CAM] L. E. G. Cambronero, J. M. Ruiz-Roman, F. A. Corpas, J. M. Ruiz-Prieto, “Manufacturing of Al-Mg-Si Alloy Foam Using Calcium Carbonate as Foaming Agent”, Journal of Materials Processing Technology, Vol.209, No.4, pp.1803~1809.(2009)

[CAS] G. Castro, S. R. Nutt, “Synthesis of Syntactic Steel Foam Using Gravity-Fed Infiltration”, Journal of Materials Science and Engineering : A, Vol.553, pp.89~95.(2012)

[CHA] T. Y. Chan, S. T. Lin, “Sintering of Elemental Carbonyl Iron and Carbonyl Nickel Powder Mixtures”, Journal of Materials Science, Vol.32, pp.1963~1967.(1997)

[CHI] L. H. Chiu, S. H. Yeh, W. C. Lo, C. L. Huang, “Effecr of Plasma Nitriding and Vacuum Heat Treatment on the Corrosion Resistance of Hot Work Tools Steels”, Journal of Chinese Corrosion Engineering, Vol.24(3), pp.201~210.(2010)

[DAO] A. Daoud, “Synthesis and Characterization of Novel ZnAl22 Syntactic Foam Composites Via Casting”, Materials Science and Engineering : A, Vol.488, pp.281~295.(2008)

[DUD] E. Dudrova, M. Kabatova, R. Bidulsky, A. S. Wronski, Industrial Processing Microstructures and Mechanical Properties of Fe-(2-4)Mn-(0.85)Mo-(0.3-0.7)C Sintered Steels, Powder Metallurgy, Vol.47(2), pp.180~189.(2004)

[EDG] E. C. Bain, Functions of the alloying elements in steel.(1939)

[GET] B. A. Gething, D. F. Heaney, D. A. Koss, T. J. Mueller, The Effect of Nickel on the Mechanical Behavior of Molybdenum P/M Steels, Materials Science and Engineering A, Vol.390, pp.19~26.(2005)

[GIB] L. J. Gibson, M. F. Ashby, “Cellular Solids : Structure and Properties”, Cambridge: Cambridge University Press.(1997)

[GUA] D. Guan, J. H. Wu, J. Wu, J. Li, W. Zhao, “Acoustic Performance of Aluminum Foams with Semiopen Cells”, Applied Acoustics, Vol.87, pp.103~108.(2015)

[HAY] K. Hayashi, T. W. Lim, “Sintering Densification Behavior of Carbonyl Iron Powder”, Advances in Powder Metallurgy, Vol.4, pp.173~181.(1991)

[HSU] C. M. Hsu, Y. C. Tzeng, S. F. Chen, Y. L. Chen, H. L. Lee, “Fabrication of 17-4PH Stainless Steel Foam by a Pressureless Powder Space Holder Technique”, Advanced Engineering Materials, Vol.23(6).(2021)

[JAI] H. Jain, D. P. Mondal, G. Gupta, R. Kumar, S. Singh, “Synthesis and Characterization of 316L Stainless Steel Foam Made through Two Different Removal Process of Space Holder Method”, Manufacturing Letters, Vol.26, pp.33~36.(2020)

[JAP] J. E. Japka, “Development of Carbonyl Iron Based Alloy Steel Powders for MIM”, Powder Injection Molding Symposium, pp.17~35.(1992)

[JEN] T. M. Jeng, S. C. Tzeng, T. C. Liu, “Heat Transfer Behavior in a Rotating Aluminum Foam Heat Sink with a Circular Impinging Jet”, International Journal of Heat and Mass Transfer, Vol.51, pp.1205~1215.(2008)

[KON] R. Konig, S. Muller, R. E. Dinnebier, B. Hinrichsen, P. Muller, A. Ribbens, J. Hwang, R. Liebscher, M. Etter, C. Pistidda, “The crystal structures of carbonyl iron Powder Revised Using in Situ Synchrotron XRPD”, Zeitschrift fur kristallographie – Crystalline Materials.(2017)

[LI] Q. M. Li, I. Magkiriadis, J. J. Harrigan, “Compressive Stain at the Onset of the Densification of Cellular Solids”, Journal of Cellular Plastics, Vol.42, pp.317~392.(2006)

[LIN1] K. H. Lin, “Wear Behavior and Mechanical Performance of Metal Injection Molded Fe-2Ni Sintered Components”, Materials and Design, Vol.32, pp.1273~1282 .(2011)

[LIN2] S. T. Lin, R. M. German, K. F. Hens, D. Lee, “Processing Variables on the Mechanical Properties of Injection Molded Carbonyl Iron Products”, Advances in Powder Metallurgy, Vol.2, pp.33~41.(1991)

[LIN3] S. T. Lin, R. M. German, “Mechanical Properties of Fully Densified Injection Molded Carbonyl Iron Powder”, Metallurgical and Materials Transactions A, Vol.21, pp. 2531~2538.(1990)

[LIN4] S.T. Lin, R. M. German, K. F. Hens, D. Lee, “Some Variances on the Sintered Properties of Injection Molded Fe-2Ni”, Advances in Powder Metallurgy, Vol.3, pp.423~435.(1990)

[MAR] J. Marx, M. Portanova, A. Rabiei, “Ballistic Performance of Composite Metal Foam Against Large Caliber Threats”, Composite Structures, Vol.225, pp.111032.(2019)

[MEN1] J. Meng, T. W. Liu, H. Y. Wang, L. H. Dai, “Ultra-High Energy Absorption High-Entropy Alloy Syntactic Foam”, Composites Part B : Engineering, Vol.207, pp.108563.(2021)

[MEN2] J. Meng, Y. Qiao, T. W. Liu, Y. Y. Tan, F. H. Cao, Y. Chen, H. Y. Wang, L. H. Dai, “Eutectic High Entropy Alloy Syntactic Foam”, Journal of Materials Science & Technology, Vol.149, pp.177~189.(2023)

[MIR] M. Mirzaei, M. H. Paydar, “A Novel Process Manufacturing Porous 316L Stainless Steel With Uniform Pore Distribution”, Materials Design, Vol.121, pp. 442~449.(2017)

[MOR] P. V. Morra, A. J. Bottger, E. J. Mittemeijer, “Decomposition of Iron-Base Martensite a Kinetic Analysis by Means of Differential Scanning Calorimetry and Dilatometry, Journal of Thermal analysis and Calorimetry”, Vol.64, pp.905~914.(2001)

[MPIF] MPIF Standard 35, “Materials Standards for Metal Injection Molded Parts”, Metal Powder Industries Federation.(2016)

[MUT1] I. Mutlu, E. Oktay, “Production and Again of Highly Porous 17-4PH Stainless Steel”, Journal of Porous Materials, Vol.19, pp.433~440.(2012)

[MUT2] I. Mutlu, E. Oktay, “Characterization of 17-4PH Stainless Steel Foam for Biomedical Applications in Simulated Body Fluid and Artificial Saliva Environments”, Materials Science and Engineering C, Vol.33, pp.1125~1131.(2013)

[NAM] S. E. Nam, D. N. Lee, “Accelerated Spheroidization of Cementite in High-Carbon Steel Wires by Drawing at Elevated Temperatures”, Journal of Material Science, Vol.22, pp.2319~2326.(1987)

[NIS] S. U. Nisa, S. Pandey, P. M. Pandey, “A Review of The Compressive Properties of Closed-Cell Aluminum Metal Foams”, Proceedings of the Institution of Mechanical Engineers, Part E : Journal of Process Mechanical Engineering.(2022)

[NOR] I. N. Orbulov, A. Szlancsik, A. Kemény, D. Kincses, “Compressive Mechanical Properties of Low-Cost Aluminium Matrix Syntactic Foams”, Composites : Part A, Vol.135, pp.105923.(2020)

[PEL] M. Pellizzari, A. Molinari, “Deep Cryogenic Treatment of Cold Work Tool Steel”, In Proceedings of the 6th International Tooling Conference.(2002)

[RIV] G. A. R. Rivero, B. F. Schultz, J. B. Ferguson, N. Gupta, P. K. Rohatgi, “Compressive Properties of Al-A206/SiC and Mg-AZ91/SiC Syntactic Foams”, Journal of Materials Research, Vol.28, No.17.(2013)

[SUN] H. Sun, Y. Wang, Z. Wang, N. Lin, Y. Peng, X. Zhao, R. Ren, H. Zhang, “Twinned Substructure in Lath Martensite of Water Quenched Fe-0.2%C and Fe-0.8%C Steels”, Journal of Materials Science & Technology, Vol.49, pp.126~132.(2020)

[TANG] E. Tang, X. Zhang, Y. Han, “Experimental research on damage characteristics of CFRP/aluminum foam sandwich structure subjected to high velocity impact”,
Journal of Materials Research and Technology, Vol.8, pp.4620~4630.(2019)

[TAO] X. F. Tao, L. P. Zhang, Y. Y. Zhao, “Al Matrix Syntactic Foam Fabricated with Bimodal Ceramic Microspheres”, Materials and Design, Vol.30, pp.2732~2736.(2009)

[WEN] C. Wen, Y. Yamada, K. Shimojima, Y. Chino, “Novel Titanium Foam for Bone Tissue Engineering”, Journal of Materials Research, Vol.17(10), pp.2633~2639.(2002)

[WU] M. W. Wu, “The Fracture and Strengthening Mechanisms of Ni-Containing Powder Metal Steels”, National Taiwan University, Doctoral Dissertation.(2007)

[YU] H. Yu, Z. Guo, B. Li, G. Yao, H. Luo, Y. Liu, “Research into the Effect of Cell Diameter of Aluminum Foam on its Compressive and Energy Absorption Properties”, Materials Science and Engineering A, Vol.454~455, pp.542~546.(2007)

[ZHA1] H. Zhang, R. M. German, “The Role of Nickel in Iron Powder Injection Molding”, International Journal of Powder Metallurgy, Vol.27, pp.249~254.(1991)

[ZHA2] H. Zhang, R. M. German, “Sintering MIM Fe-Ni alloys”, International Journal of Powder Metallurgy, Vol.38, pp.51~61.(2002)

[ZHA3] H. Zhang, R. M. German, K. F. Hens, D. Lee, “Processing and Mechanical Properties of Injection Molded Fe–2%Ni Steels”, Advances in Powder Metallurgy, Vol.3, pp.437~453.(1990)

[ZHA4] H. Zhang, R. M. German, “Homogeneity and Properties of Injection Moulded Fe-Ni Alloys”, Metal Powder Report, Vol.56, pp.18~22.(2001)

[ZHA5] Y. Zhao, Y. Tan, X. Ji, Y. He, Y. Liang, S. Xiang, Effect of Microstructure and Microtexture on Mechanical Properties of Small-Strain Cold Drawn Pearlite Steel Wires, JOM, Vol.71, pp.4041~4049.(2019)

[ZHA6] J. Zhang, G. Lu, Z. You, “Large Deformation and Energy Absorption of Additively Manufactured Auxetic and Structures: A review”, Composites Part B : Engineering, Vol.201.(2020)
指導教授 李勝隆(Sheng-Long Lee) 審核日期 2023-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明