博碩士論文 110456016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:34.239.170.244
姓名 何少康(Shao-Kang Ho)  查詢紙本館藏   畢業系所 工業管理研究所在職專班
論文名稱 應用集群分析縮短記憶體模組換線時間-以A公司為研究對象
(Application of Cluster Analysis to Reduce Memory Module Changeover Time - A Case Study of Company A)
相關論文
★ 佈置變更專案工程的執行研究 -以H公司研發單位為例★ MIL-STD-1916、MIL-STD-105E與結合製程能力指標之抽樣檢驗計畫
★ 建構客戶導向的製造品質資訊系統--以某筆記型電腦專業代工廠商為例★ GMP藥廠設施佈置規劃的探討--以E公司為研究對象
★ 應用Fuzzy c-Means演算法之物流中心位址決策模式研究★ 品質資訊系統之規劃與建構 -- 以某光碟製造公司為研究對象
★ 從製程特性的觀點探討生產過程中SPC管制圖監控運用的適切性 -- 以Wafer Level 封裝公司為例★ 六標準差之應用個案研究-以光學薄膜包裝流程改善為例
★ 利用六標準差管理提昇中小企業之製程品質-以錦絲線添加防銹蠟改善為例★ 專業半導體測試廠MES 系統導入狀況、成果及問題之探討-以A 公司為例
★ 以RFID技術為基礎進行安全管理導入-以A公司為例★ 如何提昇產品品質及降低成本—以光碟壓片廠A公司為例
★ ERP導入專案個案分析—以半導體封裝廠A公司為例★ 石英元件製造業之延遲策略應用— 以T公司為研究對象
★ 十二吋晶圓廠自動化搬運系統規劃與導入—以A公司為例★ 半導體封裝產業之生產革新改善活動-A半導體股份有限公司導入經驗探討-
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究旨在探討集群分析在縮短記憶體模組換線時間的應用,並以A公司為研究對象。A公司長期深耕記憶體模組研發與製造,成功在全球打出自有品牌,成為全球前十大記憶體模組製造商。由於記憶體模組的種類繁多,市場需求的轉變快速,訂單模式由大量生產轉為少量多樣,造成生產換線次數增加,製造成本提高。本研究利用集群分析的方式將物料相似度高的產品分群,透過集中生產同一群的產品,並觀察減少換線時間。首先用集群分析中的華德法找出A公司產品料號最佳集群數,再以K-means法將料號分群,經由PDCA逐步執行生產驗證,換線時間明顯減少,生產效率也有提升。本研究也找出了一些關鍵因素及條件,這些因素和條件對於生產線的運作非常重要,可以試圖應用在其它產品線上,提升整體生產線的效率。總體而言,本研究採用集群分析配合PDCA方法,在產品需求變化的情況下,成功地改善了生產線換線時間和生產成本的問題。本研究提供了實證研究,可以作為其他企業在生產線排程上進行決策和改善的實務參考。
摘要(英) This study aims to investigate the application of cluster analysis in reducing changeover time for memory module production, focusing on Company A as the research subject. Company A has long been dedicated to memory module research and manufacturing and has successfully established its own brand, becoming one of the top ten memory module manufacturers globally. With the wide variety of memory module types and the rapid changes in market demand, the production order pattern has shifted from mass production to small-batch and diverse production, resulting in an increase in changeover frequency and higher manufacturing costs. This study utilizes cluster analysis to group products with high material similarity and observes the reduction in changeover time through concentrated production within each group. Initially, the Ward’s method in cluster analysis is employed to determine the optimal number of clusters for Company A′s product part numbers, followed by grouping the part numbers using the K-means method. Through the step-by-step implementation of production validation using the PDCA approach, the study demonstrates a significant reduction in changeover time and an improvement in production efficiency. The study also identifies several key factors and conditions that are crucial for the operation of the production line. These factors and conditions can be explored for application in other product lines to enhance overall production line efficiency. In conclusion, this study successfully addresses the issues of changeover time and production costs on the production line by employing cluster analysis in conjunction with the PDCA method. The empirical research provided in this study can serve as practical references for other enterprises in making decisions and improvements in production line scheduling.
關鍵字(中) ★ 記憶體模組
★ 集群分析
★ 少量多樣
★ 換線時間
關鍵字(英) ★ Memory Module
★ Cluster Analysis
★ Small-batch
★ Changeover Time
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 ix
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 5
1.3 研究目的 5
1.4 研究範圍 6
1.5 論文架構 6
第二章 產業介紹與文獻探討 8
2.1 記憶體模組產業結構 8
2.2 表面黏著技術製程介紹 10
2.3 集群分析 17
2.4 PDCA循環改善 20
第三章 個案公司介紹 23
3.1 個案公司簡介與服務項目 23
3.2 成長歷程 26
3.3 基本資料 28
3.4 經營理念與核心文化 30
3.5 策略發展 31
3.6 面臨挑戰 32
3.6.1 五力分析 33
3.6.2 製造成本 34
第四章 個案分析與探討 36
4.1 個案問題描述 36
4.2 歷史數據分析 39
4.3 PDCA專案計劃 40
4.3.1 Plan 41
4.3.2 Do 45
4.3.3 Check 46
4.3.4 Action 47
4.4 數據及效益比較 49
第五章 結論與建議 52
5.1 研究結論 52
5.2 管理意涵 52
5.3 對個案公司的建議 53
5.4 未來研究建議 54
參考文獻 56
參考文獻 一、中文部份
1. 工作熊(2011),如何將錫膏印刷於電路板(solder paste printing)與影響錫膏印刷品質的因素。電子製造,工作狂人,Retrieved November 2, 2022,取自:https://www.researchmfg.com/2011/08/solder-paste-printing/。

2. 方英傑(2003),蟻群演算法應用於 PCB 小元件插置順序問題之研究,元智大學工業工程與管理學系學位論文。

3. 技高科技(2022),模組型高速多功能黏著機。Retrieved April 5, 2022,取自:http://www.ascentex.com.tw/web/prouducts_01_1_1.html。

4. 何應欽(譯)(2021),作業管理,十四版,台北市:華泰文化。(William J.Stevenson, 2014)

5. 倪中政、黃寬丞(2016),因應物聯網(IoT)世代3DIC先進封裝在台灣半導體之競爭優勢與策略,國立交通大學管理學院高階主管管理學位論文。

6. 產業價值鏈資訊平台(2022),半導體產業鏈簡介,台灣證券交易所,Retrieved March 7, 2023,取自:https://ic.tpex.org.tw/introduce.php?ic=D000。

7. 陳根培(2016),台灣光學檢測設備發展策略之個案研究,臺灣大學國際企業管理組學位論文。

8. 硬塞科技字典(2017),【Lynn 寫點科普】代工、封測、模組?今天就讓你搞懂記憶體產業與新興技術!硬塞科技字典,Retrieved March 19, 2923,取自:https://www.inside.com.tw/article/9677-dram-industry。

9. 黃志勝(2018),機器學習:集群分析K-means Clustering,Retrieved March 8, 2023,Medium,取自:https://chih-sheng-huang821.medium.com/機器學習-集群分析-k-means-clustering-e608a7fe1b43。

10. 楊正宏、胡惠鈞(2011),田口方法用於探討錫膏印刷鋼板的最佳化製程,工程科技與教育學刊,8(1),120-133。

11. 葉沛先(2005),錫膏印刷製程參數最佳化之研究,樹德科技大學經營管理研究所論文。

12. 電子工藝與技術(2019),解析SMT貼片機吸嘴(Nozzle)及飛達(Feeder)的保養,每日頭條,Retrieved Feb 7, 2023,取自:https://kknews.cc/zh-tw/news/xggkky8.html。

13. 羅之盈(2021),晶圓製造、IC封測市占世界第一,台灣半導體掌握全球科技生命線,遠見天下文化出版股份有限公司,Retrieved Feb 1, 2023,取自:https://www.gvm.com.tw/article/82808。

二、英文部份
1. Ackermann, M. R., Blömer, J., Kuntze, D., & Sohler, C. (2014). Analysis of agglomerative clustering. Algorithmica, 69, 184-215.
2. Arthur, D., & Vassilvitskii, S. (2007). K-means++: the advantages of careful seeding, Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms.
3. Asghar, R., Rehman, F., Aman, A., Iqbal, K., & Nawaz, A. A. (2020). Defect minimization and process improvement in SMT lead-free solder paste printing: a comparative study. Soldering & Surface Mount Technology, 32(1), 1-9.
4. Damci, A., Arditi, D., & Polat, G. (2013). Resource leveling in line‐of‐balance scheduling. Computer‐Aided Civil and Infrastructure Engineering, 28(9), 679-692.
5. Daniel, H., Leturmy, M., Lazure, S., Vukelic, T., & Muller, D. (2005). Influence of N2 atmosphere on the contamination effects of lead-free solder paste during reflow soldering process. Paper presented at the ECWC 10 Conference at IPC Printed Circuits Expo®, SMEMA Council APEX® and Designers Summit 05, France.
6. Erić, F. (2018). Main principles of dynamic random access memory (DRAM) and analysis of dram market. Quality Festival Conference 2019. Retrieved March 3, 2023, from http://conferences.cqm.rs/festival/2019/doc/Conference_agenda.pdf.
7. Gervasi, B. (2005). DRAM Module Market Overview. SimpleTech, JEDEX Shanghai.
8. Huang, C.-Y., & Shie, J.-J. (2004). The placement yield analysis for ic components in the x-y plane and z direction. Journal of the Chinese Institute of Industrial Engineers, 21(4), 339-348.
9. Iankova, S., Davies, I., Archer-Brown, C., Marder, B., & Yau, A. (2019). A comparison of social media marketing between B2B, B2C and mixed business models. Industrial Marketing Management, 81, 169-179.
10. Islam, M. A., Arafath, M. Y., & Hasan, M. J. (2014). Design of DDR4 SDRAM controller. In 8th International Conference on Electrical and Computer Engineering, 148-151.
11. Isniah, S., Purba, H. H., & Debora, F. (2014). Plan do check action (PDCA) method: literature review and research issues. Jurnal Sistem dan Manajemen Industri, 4(1), 72-81.
12. Kamen, E., Goldstein, A., Creveling, D., Sahinci, E., & Xiong, Z. (1998). Analysis of factors affecting component placement accuracy in SMT electronics assembly. In Twenty Third IEEE/CPMT International Electronics Manufacturing Technology Symposium, 50-57.
13. Kang, J. (2010). A Study of the DRAM Industry. Doctoral dissertation, Massachusetts Institute of Technology.
14. Kurtzersa. (2022). The No.1 Team for sustainable production solutions. Retrieved May 1, 2022, from https://www.kurtzersa.com/.
15. Lau, C. S., Khor, C. Y., Soares, D., Teixeira, J. C., & Abdullah, M. Z. (2016). Thermo-mechanical challenges of reflowed lead-free solder joints in surface mount components: a review. Soldering & Surface Mount Technology, 28(2), 41-62.
16. Madhulatha, T. S. (2012). An overview on clustering methods. IOSR Journal of Engineering, 2(4), 719-725.
17. Mattise, R. (2022). DDR3 vs. DDR4 vs. DDR5 RAM – What Is The Difference? GamingScan. Retrieved Octobor 1, 2022, from https://www.gamingscan.com/ddr3-vs-ddr4-vs-ddr5-ram/.
18. Murtagh, F., & Legendre, P. (2014). Ward’s hierarchical agglomerative clustering method: which algorithms implement Ward’s criterion?. Journal of classification, 31, 274-295.
19. Porter, M. E. (2008). The five competitive forces that shape strategy. Harvard Business Review, 86(1), 78-93.
20. Rani Y, Rohil H (2013) A study of hierarchical clustering algorithm. International Journal of Information and Computation Technology, 3(10), 1115–1122.
21. Shu, M.-H., Hsu, B.-M., & Hu, M.-C. (2012). Optimal combination of soldering conditions of BGA for halogen-free and lead-free SMT-green processes. Microelectronics Reliability, 52(11), 2690-2700.
22. Srivastava, T. (2013). Getting your clustering right (Part I). Analytics Vidhya. Retrieved December 9, 2022, from https://www.analyticsvidhya.com/blog/2013/11/getting-clustering-right/.
23. Thomson, J. (2019). The Effectiveness Of The Plan-Do-Check-Act Cycle. Business Enterprise Mapping. Retrieved December 10, 2022, from https://www.businessmapping.com/blog/the-effectiveness-of-the-plan-do-check-act-cycle/.
24. Wang, W., Nelson, P. C., & Tirpak, T. M. (1999). Optimization of high-speed multistation SMT placement machines using evolutionary algorithms. IEEE Transactions on Electronics Packaging Manufacturing, 22(2), 137-146.
指導教授 何應欽(Ying-Chin Ho) 審核日期 2023-6-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明