摘要(英) |
The semiconductor thermoelectric devices have the advantage of small size, simple structure, and high reliability, it is one of the most important green energies. Graphene nanoribbon is a very promising thermoelectric material. A method for turning zigzag graphene nanoribbons into textured zigzag graphene nanoribbons by periodically removing atoms from the zigzag edges at the top and bottom has been proposed. The indented edges induce cause quantum confinement effects, resulting in a barrier-like effect that transforms the metal characteristics into semiconductor characteristics. During the fabrication process, defects may occur in the material, and the effects of these defects on the thermoelectric properties of the textured zigzag graphene nanoribbons may vary depending on their location. We found that the textured zigzag graphene nanoribbons are less sensitive to defects in the interior sites. |
參考文獻 |
[1] R. Venkatasubramanian, E. Siivola, T. Colpitts and B. O′Quinn. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597 (2001).
[2] K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis and M. G. Kanatzidis. Cubic AgPb(m)SbTe(2+m): Bulk thermoelectric materials with high figure of merit. Science 303, 818 (2004).
[3] M. Y. Han, B. Ozyilmaz, Y. B. Zhang and P. Kim. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).
[4] L. Brey and H. A. Fertig. Electronic states of graphene nanoribbons studied with the Dirac equation. Phys. Rev. B 73, 235411 (2006).
[5] David M. T. Kuo and Y. C. Chang. Contact effects on thermoelectric properties of textured graphene nanoribbons. Nanomaterials 12, 3357 (2022).
[6] T. C. Harman and J. M. Honig. Thermoelectric and thermomagnetic effects and applications. (McGraw-Hill, New York, 1967).
[7] A. F. Ioffe. Semiconductor thermoelements and thermoelectric cooling. (Infosearch Limited, London, 1957).
[8] A. K. Geim and K. S. Novoselov. The rise of graphene. Nat. Mater. 6, 183 (2007).
[9] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim. The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009).
[10] J. M. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. L. Feng, K. Mullen and R. Fasel. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470 (2010).
[11] T. C. Li and S. P. Lu. Quantum conductance of graphene nanoribbons with edge defects. Phys. Rev. B 77, 085408 (2008).
[12] K. Wakabayashi, M. Fujita, H. Ajiki and M. Sigrist. Electronic and magnetic properties of nanographite ribbons. Phys. Rev. B 59, 8271 (1999).
[13] H. Haug and A. P. Jauho. Quantum kinetics in transport and optics of semiconductors. (Springer, Heidelberg, 1996).
[14] David M. T. Kuo. Thermoelectric and electron heat rectification properties of quantum dot superlattice nanowire arrays. AIP Advances 10, 045222 (2020).
[15] H. Sevincli and G. Cuniberti. Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons. Phys. Rev. B 81, 113401 (2010). |