博碩士論文 110521038 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:99 、訪客IP:3.147.52.53
姓名 戴晟竹(Cheng-Chu Tai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 P型鎂銀銻材料及鎂矽錫/鎂銀銻熱電模組製作
(Process Innovation of P-type MgAgSb Thermoelectric Materials and Mg2(SiSn) / MgAgSb Thermoelectric Module)
相關論文
★ 以熱熔異質磊晶成長法製造之鍺光偵測器★ 在SOI基板上以快速熱熔法製造高品質鍺及近紅外線光偵測元件之研製
★ 鉭錳合金及銅鍺化合物應用於積體電路後段製程中銅導線之研究★ 快速熱熔磊晶成長法製造側向PIN(Ge-Ge-Si)光偵測器
★ 二維薄膜及三維塊材Seebeck係數量測★ 塊材、薄膜與奈米線之熱導係數量測方法探討
★ 以快速熱熔異質磊晶成長法製作鍺矽累增型光偵測器★ 以快速熱熔融磊晶成長法製作 鍺錫合金PIN型光偵測器
★ 利用火花電漿燒結法製備以矽為基底之奈米材料於熱電特性上之應用研究★ P型金屬氧化物薄膜的製備應用於軟性電子
★ 金屬氧化物製備應用於軟性電子元件★ 超導材料釔鋇銅氧化物熱電特性量測分析
★ 鎂矽錫合金熱電特性研究及應用★ 矽基熱電模組開發及特性研究
★ P型金屬氧化物與硫化物之研究★ 物聯網之熱感測器應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來,地球暖化問題因溫室氣體的增加而日益嚴重,各國專家正積極加大對新替代能源和能源回收的研究力度。其中,熱電發電作為一個熱門領域受到廣泛關注。這種發電方式利用溫差來產生電能,僅需收集廢熱並產生溫度差即可發電。最近的研究表明,MgAgSb是一種高效、無毒且豐富的中低溫熱電材料,有望取代有毒且原料較稀有的Bi2Te3化合物,因此MgAgSb成為科學家研究的熱門題材。
本研究首先對P型MgAgSb熱電材料中的Mg3Sb2與Ag3Sb進行了不同化學劑量比例的改變,實驗結果顯示,在化學劑量比例為2:1時,試片的熱電特性最佳。接著進行了金屬接觸的測試,試圖使用不同金屬片冷壓在試片上下兩側,並在400℃下燒結48小時,觀察試片與接觸金屬的結合情況。結果發現,P型MgAgSb試片使用Ag箔作為接觸金屬時,具有較佳的接合強度和Seebeck係數,Seebeck係數範圍在180 μV/K至200 μV/K之間。相比之下,純P型MgAgSb試片的Seebeck值介於230 μV/K至250 μV/K之間。儘管存在輕微差異,但在不增加電阻的情況下,使用Ag箔可以有效提取試片產生的電壓並獲得良好的接合強度,因此Ag箔被認為是一種優秀的接觸金屬。
接著是進行與N型MgSiSn熱電材料搭配形成熱電模組的開發研究。我們嘗試使用導電Ag膠接合、金屬擴散接合和點焊串接的方法來製作熱電元件,根據以上元件的實驗結果,我們比較出最佳的串接方式為使用Ag膠進行接合。基於此結果,我們以此為基礎製作了熱電模組,並進行了後續的電性量測。
摘要(英) In recent years, the escalating global warming caused by greenhouse gases has prompted experts from various countries to intensify their research on alternative energy sources and energy recovery. Thermoelectric power generation has emerged as a prominent field of study, demonstrating substantial potential. Recent studies have highlighted the efficacy of MgAgSb as a highly efficient, non-toxic, and abundant thermoelectric material, with the potential to replace the toxic and scarce Bi2Te3 compound.
In this particular study, the composition ratios of Mg3Sb2 and Ag3Sb were altered to develop the P-type MgAgSb thermoelectric material. The experimental results indicate that the MgAgSb ratio of Mg3Sb2 to Ag3Sb at 2:1 exhibits superior thermoelectric characteristics.
To evaluate the contact metal, various metal sheets were cold pressed onto the MgAgSb material, followed by sintering at 400°C for 48 hours. The findings revealed that using Ag foil as the contact metal for the P-type MgAgSb resulted in enhanced bonding strength and Seebeck coefficient, ranging from 180 μV/K to 200 μV/K.
For the N-type MgSiSn thermoelectric materials, different techniques such as metal diffusion bonding, spot welding and conductive Ag paste coating were employed to form thermoelectric devices in series. The experimental results indicated that the most effective method of series connection was through Ag paste coating. Based on these findings, a thermoelectric module was fabricated for subsequent electrical measurements.
關鍵字(中) ★ 熱電材料
★ P型鎂銀銻
★ 熱電模組
關鍵字(英) ★ Thermoelectric Materials
★ P-type MgAgSb
★ Thermoelectric Module
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 ix
表目錄 xiv
1 第一章 緒論 1
1-1 前言 1
1-2 研究目的及動機 2
2 第二章 理論背景與文獻回顧 3
2-1 熱電效應 3
2-1-1 Seebeck效應 3
2-1-2 Peltier效應 5
2-1-3 Thomson效應 6
2-2 熱電優值係數(Thermoelectric figure of merit) 7
2-2-1 熱電優值與轉換效率之關係 9
2-2-2 電子熱導對熱導係數的影響 11
2-2-3 聲子熱導對熱導係數的影響 12
2-3 熱電材料介紹及應用 13
2-3-1 熱電材料種類與結構 13
2-3-2 熱電材料的應用 17
2-4 MgAgSb熱電材料 18
2-5 Mg3Sb2熱電材料 20
2-6 熱電模組之研究 21
2-6-1 熱電材料接合 22
2-6-2 熱電元件電極接合研究 26
2-6-3 擴散阻擋層 28
3 第三章 實驗量測儀器 29
3-1 電阻率量測 29
3-2 Seebeck係數量測 33
3-3 熱電塊材熱傳導率之量測 35
3-3-1 比熱量測 36
3-3-2 熱擴散係數量測 38
3-3-3 密度量測 39
3-4 掃描電子顯微鏡 (SEM) 40
3-5 X射線粉末繞射儀 (XRD) 41
3-6 單一試片及模組輸出量測 42
4 第四章 實驗方法與步驟 44
4-1 實驗流程 44
4-2 實驗樣品製備 45
4-2-1 製備Sb粉末 45
4-2-2 製備Mg3Sb2及Ag3Sb 粉末 49
4-2-3 Mg3Sb2與Ag3Sb冷壓塊材 50
4-2-4 高溫燒結Mg3Sb2 51
4-2-5 高溫燒結Ag3Sb 53
4-2-6 球磨Mg3Sb2和Ag3Sb粉末 54
4-2-7 高溫燒結MgAgSb試片 55
4-3 MgAgSb試片比例調整 57
4-4 MgAgSb接觸金屬測試 58
4-5 熱電元件及模組製作 60
4-5-1 金屬擴散接合 60
4-5-2 點焊接合 62
4-5-3 導電Ag膠接合 65
5 第五章 實驗結果與討論 68
5-1 改變MgAgSb試片比例實驗結果 68
5-2 接觸金屬測試實驗結果 70
5-3 熱電元件及模組實驗結果討論 72
5-3-1 金屬擴散接合測試結果 72
5-3-2 點焊接合測試結果 75
5-3-3 導電Ag膠接合測試結果 77
6 第六章 結論與未來展望 83
參考文獻 84
參考文獻 [1] 黃志誠、張學明.“神奇的熱電材料—利用溫差的熱電發電技術.” (2004):14 https://tpl.ncl.edu.tw/NclService/JournalContentDetail?SysId=A04005880
[2]鄭詩諺, "P 型熱電材料之製程開發及模組研究," 碩士, 電機工程學系, 國立中央大學, 桃園縣, 2019. [Online]. Available: https://hdl.handle.net/11296/e3562v
[3]余柏呈, "P型鎂銀銻化合物熱電材料開發及模組製作," 碩士, 電機工程學系, 國立中央大學, 桃園縣, 2020. [Online]. Available: https://hdl.handle.net/11296/gxzxk5
[4]王柏崴, "P型鎂銀銻熱電材料之製程開發及其焊料之研究," 碩士, 電機工程學系, 國立中央大學, 桃園縣, 2021. [Online]. Available:https://hdl.handle.net/11296/b7h6wm
[5]楊子廣, "P型鎂銀銻材料及鎂矽錫/鎂銀銻熱電元件製作," 碩士, 電機工程學系, 國立中央大學, 桃園縣, 2021. [Online]. Available: https://hdl.handle.net/11296/snxh3d
[6] https://zh.wikipedia.org/zh-tw/%E7%86%B1%E9%9B%BB%E6%95%88%E6%87%89
[7]陳尚謙, "準單晶碲化鉍奈米線和薄膜的熱電性質研究," 碩士, 應用物理研究所, 國立政治大學, 台北市. [Online]. Available: https://hdl.handle.net/11296/s8z2g9
[8]李俊明, "新穎硒化物Mn2Sn7Bi4Se15與In3.87Pb4.44Sb4.52Se17的合成與特性分析", 碩士, 應用化學研究所, 國立交通大學論文, 新竹市, 2010. [Online].Available: https://hdl.handle.net/11296/jpa5wh
[9] THERMOELECTRICS HANDBOOKS—MACRO TO NANO, edited by D. M. Rowe
[10]https://www.phys.sinica.edu.tw/~lowtemp/%E9%9B%99%E6%9C%88%E5%88%8A%E7%86%B1%E9%9B%BB-0302--final_check.pdf
[11]葉建弦. "固態熱電材料在廢熱回收領域之應用." 工業技術研究院綠能與環境研究所.
[12] https://pb.ps-taiwan.org/modules/news/article.php?storyid=59
[13] C. Han, Z. Li, and S. Dou, "Recent progress in thermoelectric materials," Chinese science bulletin, vol. 59, no. 18, pp. 2073-2091, 2014.
[14] B. C. Sales, D. Mandrus and R. K. Williams "Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials", Science,272,1325,1996.
[15] A.I. Hochbaum, R.Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar & P. Yang"Enhanced thermoelectric performance of rough silicon nanowires"
[16] L.D. Zhao, B.P. Zhang, W.S. Liu, and J.F. Li "Effect of mixed grain sizes on thermoelectric performance of Bi2Te3 compound". Journal of Applied Physics, 105(2), 2009,023704.
[17] 鄭安良, "P 型熱電材料Bi0.5Sb1.5Te3之合成與分析," 碩士, 電機工程學系研究所, 國立中山大學, 高雄市, 2011. [Online]. Available: https://hdl.handle.net/11296/hkakss
[18] 柯鈺翔,′′碲化鉛熱電塊材與銅電極間填料接合之擴散阻障效應及界面性質研究,′′ 碩士, 機電科技學系研究所, 國立臺灣師範大學, 2014 臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/k8x4pz
[19] W.C Chou, "Electrodeposition and Characterization of Bi-Te-Se Thermoelectric Thick Films",master thesis of Depart,ent of Materials Science and Engineering College of Engineering , National Taiwan University ,2016
[20] G.J. Snyder, and E.S. Toberer, “Complex thermoelectric materials”, Nature Materials, Vol.7, pp. 105-114,(2008).
[21] Von Lukowicz, Marian, et al. "Thermoelectric generators on satellites—An approach for waste heat recovery in space." Energies 9.7 (2016): 541.
[22] C. Han, Z. Li, and S. Dou, "Recent progress in thermoelectric materials," Chinese science bulletin, vol. 59, no. 18, pp. 2073-2091, 2014.
[23]李杰, "MgAgSb系列熱電材料生長與傳輸性質研究," 碩士, 物理學系, 國立東華大學, 花蓮縣, 2015. [Online]. Available: https://hdl.handle.net/11296/2ad3hr
[24] Chan, Kuei-bo C., Lee, & Chi-Shen L. ′′Synthesis and Characterization of New Thermoelectric Materials contain Tin′′ ,2003. Available: http://hdl.handle.net/11536/55190.
[25] Yang, Jian. Thermoelectric Properties of CoSb3-Based Skutterudites. Diss. Boston College. Graduate School of Arts and Sciences, 2010.
[26] Terasaki, Ichiro, Yoshitaka Sasago, and Kunimitsu Uchinokura. "Large thermoelectric power in NaCo 2 O 4 single crystals." Physical Review B 56.20 (1997): R12685.
[27] R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O′quinn, "Thin-film thermoelectric devices with high room-temperature figures of merit," Nature, vol. 413, no. 6856, pp. 597-602, 2001.
[28] Li, Deyu, et al. "Thermal conductivity of individual silicon nanowires." Applied Physics Letters 83.14 (2003): 2934-2936.
[29]朱旭山. "熱電材料與元件之原理與應用." 電子與材料雜誌.
[30] Phuoc H. Le, Liao, C., Luo, C. Wei, & Leu, J.′′ Thermoelectric properties of nanostructured bismuth-telluride thin films grown using pulsed laser deposition′′,2014.
[31] C.K. Liu, Y.S. Chen, M.J. Dai, W.K. Ha , L.L. Liao" Thermoelectric Waste Heat Recovery Technology for Automotive", Industry Material Magazine, 340 (2015)
[32] G. Zhou, J.-w. Xu, and G.-h. Rao, "Hole doped α-MgAgSb as potential low temperature thermoelectric materials," Physics Letters A, vol. 383, no. 26, p. 125833, 2019.
[33] Li, Dandan, et al. "Atomic Disorders Induced by Silver and Magnesium Ion Migrations Favor High Thermoelectric Performance in α‐MgAgSb‐Based Materials." Advanced Functional Materials 25.41 (2015): 6478-6488.
[34] H. Zhao et al., "High thermoelectric performance of MgAgSb-based materials," Nano Energy, vol. 7, pp. 97-103, 2014.
[35] P. Ying et al., "High performance α-MgAgSb thermoelectric materials for low temperature power generation," Chemistry of Materials, vol. 27, no. 3, pp. 909-913, 2015.
[36] M. J. Kirkham, A. M. dos Santos, C. J. Rawn, E. Lara-Curzio, J. W. Sharp, and A. J. Thompson, "Ab initio determination of crystal structures of the thermoelectric material MgAgSb," (in English), Phys. Rev. B, Article vol. 85, no. 14, p. 7, Apr 2012, Art no. 144120, doi: 10.1103/PhysRevB.85.144120.
[37] Suiting Ning, Shan Huang, Ziye Zhang, Ning Qi, Man Jiang, Zhiquan Chen, Xinfeng Tang,′′Band convergence boosted high thermoelectric performance of Zintl compound Mg3Sb2 achieved by biaxial strains,′′Journal of Materiomics,Volume 8, Issue 5,2022,Pages 1086-1094,ISSN 2352-8478,https://doi.org/10.1016/j.jmat.2022.02.001.
(https://www.sciencedirect.com/science/article/pii/S235284782200020X)
[38] Imasato, K., Wood, M., Anand, S., Kuo, J.J. and Snyder, G.J.′′ Understanding the High Thermoelectric Performance of Mg3Sb2-Mg3Bi2 Alloys′′, 2022. Adv. Energy Sustainability Res., 3: 2100208. https://doi.org/10.1002/aesr.202100208
[39] LaLonde, Aaron D., et al. "Lead telluride alloy thermoelectrics." Materials today 14.11 (2011): 526-532.
[40] 李昂倖(2012)。碲化鉛熱電材料與銅電極之填料接合性質研究。國立臺灣師範大學機電科技學系碩士論文,台北市。 取自https://hdl.handle.net/11296/6aabga
[41] http://www.substech.com/dokuwiki/doku.php?id=spark_plasma_sintering
[42] K.T. Wojciechowski, R. Zybala, R. Mania, "High temperature CoSb3-Cu junctions, Microelectronics Reliability", 51, 1198-1202, 2011.
[43] W. P. Lin, D. E. Wesolowski, C. C. Lee, Barrier/ bonding layers on bismuth telluride (Bi2Te3) for high temperature thermoelectric modules, Materials Letters, 14 , 526-532, 2011.
[44] https://zh.wikipedia.org/zh-tw/%E6%93%B4%E6%95%A3%E6%8E%A5%E5%90%88
[45] Kubo, M., et al. "Fabrication of layered p-type AgSbTe/sub 2/-(Bi, Sb)/sub 2/Te/sub 3/thermoelectric module and its performances." Proceedings ICT′03. 22nd International Conference on Thermoelectrics (IEEE Cat. No. 03TH8726). IEEE, 2003.
[46] 林哲緯, ′′Bi2Te2.55Se0.45熱電材料與Cu/Ag電極之薄膜固液擴散接合研究′′,國立臺灣大學材料科學與工程學研究所碩士論文,台北市, 2011. 取自https://hdl.handle.net/11296/daq5fa
[47] Nakamura, Shigeyuki, Yoshihisa Mori, and Ken’ichi Takarabe. "Analysis of the microstructure of Mg2Si thermoelectric devices." Journal of electronic materials 43.6 (2014): 2174-2178.
[48] Hasezaki, K., et al. "Thermoelectric semiconductor and electrode-fabrication and evaluation of SiGe/electrode." XVI ICT′97. Proceedings ICT′97. 16th International Conference on Thermoelectrics (Cat. No. 97TH8291). IEEE, 1997.
[49] 科邁斯科技. "熱分析-DSC 熱示差掃描分析儀的原理及應用介紹." https://www.techmaxasia.com/knowledge-detail/DSC-20210208/
[50] 徐梁. "閃光導熱儀LFA原理與測試."
[51]"科學基礎研究之重要利器-掃描式電子顯微鏡(SEM)"科學研習No.52-5(May 2013)
[52] Antonis Nanakoudis (Thermo Fisher Scientific Phenom 專業工程師) "什麼是SEM?淺談掃描式電子顯微鏡技術"
https://www.kctech.com.tw/%E4%BB%80%E9%BA%BC%E6%98%AFsem%E6%B7%BA%E8%AB%87%E6%8E%83%E6%8F%8F%E5%BC%8F%E9%9B%BB%E5%AD%90%E9%A1%AF%E5%BE%AE%E9%8F%A1%E6%8A%80%E8%A1%93/
[53] https://www.materialsnet.com.tw/DocView.aspx?id=592
指導教授 辛正倫(Cheng-Lun Hsin) 審核日期 2023-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明