博碩士論文 110521047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:69 、訪客IP:3.140.196.168
姓名 王文濤(Wen-Tao Wang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以正弦閘控操作的砷化銦鎵/砷化銦鋁單光子雪崩二極體實現光子數解析
(Photon Number Resolving Detection with a Sinusoidally Gated InGaAs/InAlAs Single-Photon Avalanche Diode)
相關論文
★ 以砷化銦鎵/砷化銦鋁單光子雪崩二極體陣列提升光子數解析性能★ 以自差分模式操作砷化銦鎵/砷化銦鋁單光子雪崩二極體實現光子數解析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-1-23以後開放)
摘要(中) 隨著量子科技的發展,其中量子通訊以及量子計算對具有光子數解析能力的單光子偵測器需求日益旺盛,並以此命名為光子數解析偵測器(photon number resolving detector, PNRD)。以線性光學量子計算(Linear Optical Quantum Computing, LOQC)中的CNOT閘(Controlled-NOT gate)為例,需要PNRD用來運行也可以對錯誤運算進行校正。在眾多光偵測器種類中,本文以III-V族單光子雪崩二極體(single-photon avalanche diode, SPAD)來做研究,不僅僅是因為SPAD比其他光偵測器製程更簡單且穩定,也剛好能運用在量子通訊1550 nm波段的量子密鑰分發(quantum key distribution, QKD)上當接收光子的偵測器。要在III-V SPAD上達成光子數解析其中之一是必須在崩潰電流飽和之前量測,這意味著要在低超額偏壓時就能觀察到崩潰訊號,但往往其都會被電容訊號給蓋住。另一個則是後脈衝效應(afterpulsing effect),III-V族由於缺陷較多導致越高頻時其干擾的更為嚴重。
因此本研究用自製的InGaAs/InAlAs SPAD以頻率操作在300 MHz的正弦閘控模式其中的短閘控寬度能抑制暗計數和後脈衝效應,且用濾波技術消除電容訊號使崩潰訊號足以辨別,接著在不同溫度下量測尋找元件的最佳特性,最後在溫度200 K時在波長1550 nm雷射下成功解析出5顆光子,並與100 MHz的脈衝閘控相比有更好的PNR表現,最後以不同頻率以及不同累增層厚度探討其對PNR性能的影響。
摘要(英) With the advancement of quantum technology, the demand for single-photon detectors with photon-number resolving capability has been increasing, particularly in the fields of quantum communication and quantum computing. This has led to the development of detectors known as photon number resolving detectors (PNRD). Taking the example of the Controlled-NOT gate (CNOT gate) in linear optical quantum computing (LOQC), PNRD is essential for its operation and correction of error computations. Among various types of photodetectors, this study focuses on III-V single-photon avalanche diodes (SPADs) due to their simpler and more stable fabrication process compared to other detectors. Additionally, III-V SPADs are suitable for quantum key distribution (QKD) in the 1550 nm wavelength range for quantum communication. Achieving photon-number resolving on III-V SPADs requires measurements before reaching the breakdown current saturation, which means observing the breakdown signal at low excess bias. However, this signal is often overshadowed by capacitive signals. Another challenge is the afterpulsing effect, where the interference becomes more severe at higher frequencies due to the higher defect density in III-V materials.
Therefore, in this study, a self-made InGaAs/InAlAs Single-Photon Avalanche Diode (SPAD) was employed to operate in a sinusoidally gated mode at a frequency of 300 MHz. The use of a short gate width in this mode helped suppress dark counts and afterpulsing effects. Additionally, filtering techniques were applied to eliminate capacitance signals, ensuring that breakdown signals were discernible. Subsequent measurements were conducted at different temperatures to identify the optimal characteristics of the device. Finally, at a temperature of 200 K and under a wavelength of 1550 nm laser, the successful resolution of 5 photons was achieved. The performance in terms of Photon Number Resolving (PNR) showed superior results compared to a 100 MHz pulse-gated system. The study concluded by investigating the impact of varying frequencies and different multiplication layer thicknesses on the PNR performance.
關鍵字(中) ★ 單光子雪崩二極體
★ 正弦閘控
★ 光子數解析
關鍵字(英) ★ SPAD
★ Sinusoidally Gated
★ Photon Number Resolving
論文目次 中文摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 xii
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 光偵測器的介紹 3
1.3.1 光電倍增管(photomultiplier tube, PMT) 3
1.3.2 超導奈米線單光子偵測器(superconducting nanowire single photon detector, SNSPD) 4
1.3.3 超導相變感測器(transition-edge sensor, TES) 5
1.3.4 單光子雪崩二極體(single photon avalanche diode, SPAD) 6
1.4 光偵測器的應用 7
1.4.1 量子密鑰分發(quantum key distribution, QKD) 7
1.4.2 線性光學量子計算(linear optical quantum computing, LOQC) 9
第二章 文獻探討 11
2.1 光子數解析(photon number resolving, PNR) 11
2.1.1 空間複用(spatial-multiplexing) 11
2.1.2 時間複用(time-multiplexing) 13
2.1.3 元件自身能力(inherent-capability) 14
2.2 消除電容訊號的方式 16
2.2.1 自差分電路(self-differencing circuit) 16
2.2.2 光學自差分技術(optical self-balancing) 17
2.2.3 正弦閘控技術(sinusoidally gated) 18
第三章 單光子雪崩二極體原理及特性介紹 20
3.1 電流-電壓特性及操作模式 20
3.2 崩潰機制 21
3.2.1 齊納崩潰 21
3.2.2 雪崩崩潰 22
3.3 材料特性 23
3.4 元件結構 25
3.5 截止電路 29
3.5.1 被動截止電路 29
3.5.2 正弦閘控模式 30
3.6 元件重要參數 32
3.6.1 暗計數(dark count rate, DCR) 32
3.6.2 後脈衝效應(afterpulsing effect) 34
3.6.3 單光子偵測效率(single photon detection efficiency, SPDE) 35
3.6.4 光子數解析參數 36
第四章 量測系統架構 38
4.1 電流-電壓量測架構 38
4.2 暗計數量測架構 40
4.3 光計數量測架構 42
4.4 後脈衝效應量測架構 44
4.5 光子數解析量測架構 46
第五章 量測結果與討論 49
5.1 電流-電壓量測 49
5.2 暗計數量測 51
5.3 光計數量測 54
5.3.1 有效閘控寬度 54
5.3.2 單光子偵測效率量測 56
5.4 後脈衝效應量測 60
5.5 光子數解析量測 62
5.5.1 不同閘控模式比較 70
5.5.2 不同操作頻率比較 73
5.5.3 不同元件特性比較 77
第六章 結論與未來展望 80
參考文獻 82
附錄一 86
參考文獻 [1] Photomultiplier Tubes: Basics and Applications. 3rd ed. Hamamatsu: Hamamatsu Photonics; 2006.

[2] Gol’Tsman, G. N., et al. "Picosecond superconducting single-photon optical detector." Applied physics letters 79.6 (2001): 705-707.

[3] Reddy, Dileep V., et al. "Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1550 nm." Optica 7.12 (2020): 1649-1653.

[4] Cabrera, B., et al. "Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors." Applied Physics Letters 73.6 (1998): 735-737.

[5] Miller, Aaron J., et al. "Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination." Applied Physics Letters 83.4 (2003): 791-793.

[6] Lita, Adriana E., Aaron J. Miller, and Sae Woo Nam. "Counting near-infrared single-photons with 95% efficiency." Optics express 16.5 (2008): 3032-3040.

[7] Bennett, C. H. and Brassard, G. "Quantum Cryptography: Public key distribution and coin tossing," International Conference on Computers, Systems & Signal Processing, Bangalore, India, 10-12 December 1984, pp. 175-179.

[8] Mart Haitjema. "A Survey of the Prominent Quantum Key Distribution Protocols," December 2007.

[9] Lütkenhaus, Norbert. "Security against individual attacks for realistic quantum key distribution." Physical Review A 61.5 (2000): 052304.

[10] Lo, Hoi-Kwong, Xiongfeng Ma, and Kai Chen. "Decoy state quantum key distribution." Physical review letters 94.23 (2005): 230504.

[11] O′brien, Jeremy L. "Optical quantum computing." Science 318.5856 (2007): 1567-1570.

[12] Knill, Emanuel, Raymond Laflamme, and Gerald J. Milburn. "A scheme for efficient quantum computation with linear optics." nature 409.6816 (2001): 46-52.

[13] Horikiri, Tomoyuki, and Takayoshi Kobayashi. "Decoy state quantum key distribution with a photon number resolved heralded single photon source." Physical Review A 73.3 (2006): 032331.

[14] Liang, Yan, et al. "High-speed photon-number resolving with sinusoidally gated multipixel photon counters." IEEE Photonics Technology Letters 24.20 (2012): 1852-1855.

[15] Chen, Xiuliang, et al. "Temporal and spatial multiplexed infrared single-photon counter based on high-speed avalanche photodiode." Scientific Reports 7.1 (2017): 44600.

[16] Kardynał, B. E., Z. L. Yuan, and A. J. Shields. "An avalanche‐photodiode-based photon-number-resolving detector." Nature photonics 2.7 (2008): 425-428.

[17] Wu, Guang, et al. "Photon-number-resolving detection based on InGaAs/InP avalanche photodiode in the sub-saturated mode." Optics Express 17.21 (2009): 18782-18787.

[18] Namekata, Naoto, Shunsuke Adachi, and Shuichiro Inoue. "Ultra-low-noise sinusoidally gated avalanche photodiode for high-speed single-photon detection at telecommunication wavelengths." IEEE Photonics Technology Letters 22.8 (2010): 529-531.

[19] Chen, Xiuliang, et al. "Photon-number resolving performance of the InGaAs/InP avalanche photodiode with short gates." Applied Physics Letters 95.13 (2009).

[20] Gisin N, Ribordy G, Tittel W, Zbinden H. "Quantum cryptography. " Rev Mod Phys 2002;74:145

[21] Hobbs, David, et al. "Astro2020 activity, project of state of the profession consideration (APC) white paper: All-sky near infrared space astrometry. State of the profession considerations: Development of scanning NIR detectors for astronomy." Instrumentation and Methods for Astrophysics:1907.05191 (2019).

[22] C. Merckling et al., "Monolithic integration of III-V semiconductors by selective area growth on Si(001) substrate: Epitaxy challenges & applications, " ECS Transactions, vol. 66, pp. 107 – 116, 2015.

[23] Tan, Lionel Juen Jin, et al. "Temperature dependence of avalanche breakdown in InP and InAlAs." IEEE Journal of Quantum Electronics 46.8 (2010): 1153-1157.

[24] D. A. Ramirez et al., "Detection efficiencies and generalized breakdown probabilities for nanosecond-gated near infrared single-photon avalanche photodiodes," IEEE Journal of Quantum Electronics, vol. 42, no. 2, pp. 137-145, Feb., 2006.

[25] Wang, Hui, et al. "Low dark current and high gain-bandwidth product of avalanche photodiodes: optimization and realization." Optics Express 28.11 (2020): 16211-16229.

[26] Acerbi, Fabio, et al. "Design criteria for InGaAs/InP single-photon avalanche diode." IEEE Photonics Journal 5.2 (2013): 6800209-6800209.

[27] Lacaita, A., et al. "Single-photon detection beyond 1 μm: performance of commercially available InGaAs/InP detectors." Applied Optics 35.16 (1996): 2986-2996.

[28] Cova, Sergio, et al. "Avalanche photodiodes and quenching circuits for single-photon detection." Applied optics 35.12 (1996): 1956-1976.

[29] Jiang, Xudong, et al. "Afterpulsing effects in free-running InGaAsP single-photon avalanche diodes." IEEE Journal of Quantum Electronics 44.1 (2007): 3-11.

[30] Zhang, Jun, et al. "Advances in InGaAs/InP single-photon detector systems for quantum communication." Light: Science & Applications 4.5 (2015): e286-e286.

[31] Hadfield, Robert H. "Single-photon detectors for optical quantum information applications." Nature photonics 3.12 (2009): 696-705.

[32] Campbell, Joe C., et al. "Common-mode cancellation in sinusoidal gating with balanced InGaAs/InP single photon avalanche diodes." IEEE Journal of Quantum Electronics 48.12 (2012): 1505-1511.

[33] Zhang, Jun, et al. "2.23 GHz gating InGaAs/InP single-photon avalanche diode for quantum key distribution." Advanced Photon Counting Techniques IV. Vol. 7681. SPIE, 2010.

[34] Liang, Yan, et al. "Room-temperature single-photon detection with 1.5-GHz gated InGaAs/InP avalanche photodiode." IEEE Photonics Technology Letters 29.1 (2016): 142-145.

[35] Liang, Yan, et al. "High-speed photon-number resolving with sinusoidally gated multipixel photon counters." IEEE Photonics Technology Letters 24.20 (2012): 1852-1855.

[36] Schmidt, M., et al. "Photon-number-resolving transition-edge sensors for the metrology of quantum light sources." Journal of Low Temperature Physics 193 (2018): 1243-1250.
指導教授 許晉瑋 李依珊 審核日期 2024-1-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明