博碩士論文 110521048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.135.184.255
姓名 陸少綿(Shao-Mian Lu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 混和訊號 1.6-3.6GHz 相位旋轉延遲鎖定迴路
(A Mixed Signal 1.6-3.6GHz Phase Rotator Delay-Locked Loop In 40nm CMOS Technology)
相關論文
★ 基於十六奈米鰭式場效電晶體平台實現通道轟擊電離編程機制之低成本高速嵌入式動態隨機存取記憶體★ 具有通道熱電子注入編程能力的40nm 4kb 1T OTP陣列的設計和實現
★ 通過虛擬源極傳輸模型對16-nm應變矽鰭式場效電晶體低溫準彈道傳輸的電性變化建模★ 基於閾值電壓電性擾動所實現之高速亂數產生率的40-nm 4T-SRAM真亂數產生器記憶體矩陣晶片
★ 多阻態存取1T1R電阻式記憶體矩陣晶片的三態內容定址記憶體的設計和實現★ 新穎的多阻態之真亂數產⽣器由 40nm電阻式記憶體陣列實現
★ 40奈米之電阻式記憶體陣列透過啟動/設置/重置操作物理不可複製功能的綜合研究★ 新穎極小化高密度三維整體堆疊式1T-nF電流熔絲一次性編程記憶體晶片
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-1-10以後開放)
摘要(中) 第五代雙倍資料傳輸同步動態隨機存取記憶體 (Gen-5 Double Data Rate
Synchronous Dynamic Random Access Memory)[1]在維持和前代 DDR4/3 差不多
的延遲時間(Latency Time)下,更強調超低工作功耗 (Power Consumption)和超
大輸出入頻寬 (Input/Output (I/O)-Bandwidth)[2],其中操作電壓進一步從 1.2V
下降到 1.1V,相比於 DDR4 相同模組比較下可帶來約 20%的功耗下降[3],而
IO 頻寬來到 4800~6400 MT/s (並在後續更新中進一步提升)。在此超高資料傳
輸效率和低電壓操作的條件下,訊號保真度(Signal Integrity)在遭遇先進製程產
生的製程擾動和電性擾動的影響下將更難維持[4],尤其是波形訊號的抖動
(Jitter)[5]和相位雜訊(Phase Noise)[6]更嚴重困擾高速電路設計,如在延遲鎖定迴
路(Delay-Locked Loop)設計中,這些現象尤為突出。本文使用 40-nm CMOS 技
術設計應對於 DDR5 DRAM 規格所需之 DLL 電路,希冀可解決高速傳輸所帶
來的 Jitter 和 Phase Noise 相關議題,為 DDR5 DRAM 應用之市場普及做出貢
獻。
本文所設計之相位旋轉延遲線使用了一種直接輸入-輸出比較的技術,此技
術與傳統的使用複製延遲的 DLL[7]相比,通過晶片內分割採樣時鐘將輸入時鐘
的上升沿與輸出節拍時鐘對齊,可以最小化延遲線及複製延遲電路的使用,進
而降低工藝-電壓-溫度(PVT)變異可能會引起複製延遲電路的延遲不匹配所
產生的訊號抖動,同時也達到降低功耗的作用。
最後完成的相位旋轉延遲鎖定迴路,其架構包含除頻器(Divider)、相位偵
測器(Phase Detector)、計數器式控制電路(Counter-Based Controller)以及相位旋
轉延遲線(Phase Rotator Delay Line)。操作頻率範圍在 1.6-3.6GHz,操作電壓
0.9V,鎖定週期為 40T,操作頻率 3.6GHz 時,消耗功率為 4.5mW,Jitterp-p 為
0.266ps,Jitterrms 為 0.188ps。
摘要(英) The fifth-generation Double Data Rate Synchronous Dynamic Random Access
Memory (DDR5 SDRAM) maintains a similar latency time to its predecessors DDR4
and DDR3. However, it emphasizes ultra-low power consumption and significantly
increases input/output (I/O) bandwidth. [1] The operating voltage has further
decreased from 1.2V to 1.1V, resulting in approximately a 20% reduction in power
consumption compared to DDR4 modules with the same capacity. The I/O bandwidth
has reached speeds of 4800-6400 MT/s, with further improvements expected in
subsequent updates. Under these conditions of ultra-efficient data transfer and lowvoltage operation, signal integrity becomes more challenging to be kept in the same
shape due to process and electrical disturbances associated with advanced fabrication
processes. This is particularly prominent in high-speed circuit design, notably in the
design of the Delay-Locked Loops (DLL).
This paper presents the design of a DLL circuit for DDR5 SDRAM
specifications using 40-nm CMOS technology, and aimes at addressing jitter and
phase noise issues associated with high-speed transmission, which contributes to the
adoption of DDR5 SDRAM in the market.
The phase-rotator delay line used in this paper employs a direct input-output
comparison technique. This approach, compared to the traditional use of duplicated
delay line in DLLs, minimizes the use of delay line and duplicate delay circuits by
aligning the rising edges of the input clock with the output clock within the chip′s
internal sampling clock. These design efforts does not only minimize signal jitter
caused by variations in delay within duplicate delay circuits due to process-voltagetemperature (PVT) variations but also reduces power consumption.
iii
The final phase-rotator delay-locked loop consists of a divider, phase detector,
counter-based controller, and phase-rotator delay-lines. It operates in the frequency
range of 1.6-3.6GHz with a voltage of 0.9V and a lock period of 40T. At an operating
frequency of 3.6GHz ; it consumes 4.5mW and has a jitter peak-to-peak of 0.266ps,
and a root mean square jitter of 0.188ps.
關鍵字(中) ★ 延遲鎖定迴路
★ 延遲鎖相迴路
★ 相位旋轉
關鍵字(英) ★ DLL
★ Delay-Locked Loop
★ Phase Rotator
論文目次 摘要............................................................................................................................................ i
Abstract ..................................................................................................................................... ii
目錄........................................................................................................................................... v
圖目錄..................................................................................................................................... vii
表目錄....................................................................................................................................... x
一、 導論.............................................................................................................................. 1
1.1 背景................................................................................................................................. 1
1.2 研究動機......................................................................................................................... 3
1.3 論文架構......................................................................................................................... 5
二、 延遲鎖定迴路架構介紹.............................................................................................. 6
2.1 鎖相迴路與延遲鎖定迴路之原理................................................................................. 6
2.1.1 鎖相迴路.................................................................................................................. 6
2.1.2 延遲鎖定迴路.......................................................................................................... 8
2.2 延遲鎖定迴路架構分類............................................................................................... 11
2.2.1 類比式延遲鎖定迴路............................................................................................ 11
2.2.2 數位式延遲鎖定迴路............................................................................................ 12
2.2.3 混訊式延遲鎖定迴路............................................................................................ 13
2.3 數位控制電路............................................................................................................... 14
2.3.1 移位暫存器式延遲鎖定迴路................................................................................ 14
2.3.2 計數器式延遲鎖定迴路........................................................................................ 15
2.3.3 漸進比較式延遲鎖定迴路.................................................................................... 17
三、 相位旋轉延遲鎖定迴路架構介紹............................................................................ 19
3.1 電路架構....................................................................................................................... 19
3.2 除頻器........................................................................................................................... 20
3.3 相位偵測器................................................................................................................... 23
3.4 控制電路....................................................................................................................... 26
vi
3.4.1 4-bit 上下數計數器................................................................................................ 26
3.4.2 4-to-16 解碼器 ....................................................................................................... 28
3.4.3 訊號整合電路........................................................................................................ 30
3.5 相位旋轉延遲線........................................................................................................... 31
3.5.1 注入鎖定震盪器.................................................................................................... 31
3.5.2 相位旋轉多工器.................................................................................................... 33
3.5.3 16-bit 相位內插器.................................................................................................. 34
3.6 輸出與複製延遲電路................................................................................................... 37
四、 電路實現與模擬結果................................................................................................ 38
4.1 設計流程....................................................................................................................... 38
4.2 模擬結果....................................................................................................................... 40
4.3 晶片佈局....................................................................................................................... 60
4.4 電路規格與比較表....................................................................................................... 61
五、 結論與未來展望........................................................................................................ 62
參考文獻................................................................................................................................. 63
參考文獻 [1] S. Lee, N-H Lee, KW. Lee, JH. Kim, JH. Jin, YS. Lee, YC Hwang, HS. Kim and
S. Pae, "Development and Product Reliability Characterization of Advanced High
Speed 14nm DDR5 DRAM with On-die ECC," 2023 IEEE International
Reliability Physics Symposium (IRPS), Monterey, CA, USA, 2023, pp. 1-4, doi:
10.1109/IRPS48203.2023.10117889.
[2] J. Lee, Y. Choi and C. Kim, "A 266-3750 MHz Wide-Range Adaptive PhaseRotator-Based All Digital DLL for LPDDR5 Controllers," 2022 IEEE
International Symposium on Circuits and Systems (ISCAS), Austin, TX, USA,
2022, pp. 2177-2181, doi: 10.1109/ISCAS48785.2022.9937901.
[3] Sanghyuk Kwon, Young Hoon Son and Jung Ho Ahn, "Understanding DDR4 in
pursuit of In-DRAM ECC," 2014 International SoC Design Conference (ISOCC),
Jeju, 2014, pp. 276-277, doi: 10.1109/ISOCC.2014.7087646.
[4] D. Winterberg, V. Kumar, T. Chen and B. Mutnury, "DDR5 Electrical Challenges
in High-Speed Server Design," 2023 Joint Asia-Pacific International Symposium
on Electromagnetic Compatibility and International Conference on
ElectroMagnetic Interference & Compatibility (APEMC/INCEMIC), Bengaluru,
India, 2023, pp. 1-4, doi: 10.1109/APEMC57782.2023.10217517.
[5] A. A. Aydiner, Y. Chu, O. Mikulchenko, J. Yan, R. J. Friar and E. Y. Fu, "Modeling
of DDR5 signaling from jitter sequences to accurate bit error rate (BER)," 2017
IEEE 26th Conference on Electrical Performance of Electronic Packaging and
Systems (EPEPS), San Jose, CA, USA, 2017, pp. 1-3, doi:
10.1109/EPEPS.2017.8329722.
64
[6] N. Garmendia and J. Portilla, "Study of PM Noise and Noise Figure in Low Noise
Amplifiers Working under Small and Large Signal Conditions," 2007 IEEE/MTTS International Microwave Symposium, Honolulu, HI, USA, 2007, pp. 2095-2098,
doi: 10.1109/MWSYM.2007.380300.
[7] S. U. Rehman, M. M. Khafaji, A. Ferschischi, C. Carta and F. Ellinger, "A 0.2-1.3
ns Range Delay-Control Scheme for a 25 Gb/s Data-Receiver Using a Replica
Delay-Line-Based Delay-Locked-Loop in 45-nm CMOS," in IEEE Transactions
on Circuits and Systems II: Express Briefs, vol. 67, no. 5, pp. 806-810, May 2020,
doi: 10.1109/TCSII.2020.2980813.
[8] S. Kuge, T. Kato, K. Furutani, S. Kikuda, K. Mitsui, T. Hamamoto, J. Setogawa,
K. Hamade, Y. Komiya, S. Kawasaki, T. Kono, T. Amano, T.Kubo, M. Haraguchi,
Y. Nakaoka, M. Akiyama, Y. Konishi, H. Ozaki and T. Yoshihara, "A 0.18-/spl
mu/m 256-Mb DDR-SDRAM with low-cost post-mold tuning method for DLL
replica," in IEEE Journal of Solid-State Circuits, vol. 35, no. 11, pp. 1680-1689,
Nov. 2000, doi: 10.1109/4.881215.
[9] D. Arruda and N. H. Madhavji, "Towards a big data requirements engineering
artefact model in the context of big data software development projects: Poster
extended abstract," 2017 IEEE International Conference on Big Data (Big Data),
Boston, MA, USA, 2017, pp. 4725-4726, doi: 10.1109/BigData.2017.8258521.
[10] X. Lyu, F. Ying and P. Onpium, "Scene Style Conversion Algorithm of AI Digital
Host: A Deep Learning Approach," 2023 2nd International Conference on Edge
Computing and Applications (ICECAA), Namakkal, India, 2023, pp. 783-787, doi:
10.1109/ICECAA58104.2023.10212269.
65
[11] J. C. Talwana and H. J. Hua, "Smart World of Internet of Things (IoT) and Its
Security Concerns," 2016 IEEE International Conference on Internet of Things
(iThings) and IEEE Green Computing and Communications (GreenCom) and
IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData), Chengdu, China, 2016, pp. 240-245, doi: 10.1109/iThingsGreenCom-CPSCom-SmartData.2016.64.
[12] M. N. Md Reba, F. Rocadenbosch, M. Sicard, C. Munoz and S. Tomas, "Piecewise variance method for signal-to-noise ratio estimation in elastic/Raman lidar
signals," 2007 IEEE International Geoscience and Remote Sensing Symposium,
Barcelona, Spain, 2007, pp. 3158-3161, doi: 10.1109/IGARSS.2007.4423515.
[13] E. Bayram, A. F. Aref, M. Saeed and R. Negra, "1.5–3.3 GHz, 0.0077 mm2, 7 mW
All-Digital Delay-Locked Loop With Dead-Zone Free Phase Detector in 0.13μm
CMOS," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65,
no. 1, pp. 39-50, Jan. 2018, doi: 10.1109/TCSI.2017.2715899.
[14] R. -J. Yang and S. -I. Liu, "A 2.5 GHz All-Digital Delay-Locked Loop in 0.13μm
CMOS Technology," in IEEE Journal of Solid-State Circuits, vol. 42, no. 11, pp.
2338-2347, Nov. 2007, doi: 10.1109/JSSC.2007.906183.
[15] H. Park, J. Sim, Y. Choi, J. Choi, Y. Kwon, S. Park, G. Park, J. Chung, K.-M. Kim,
H. -K. Jung, H. Kim, J. Chun and C. Kim, "A 1.3–4-GHz Quadrature-Phase Digital
DLL Using Sequential Delay Control and Reconfigurable Delay Line," in IEEE
Journal of Solid-State Circuits, vol. 56, no. 6, pp. 1886-1896, June 2021, doi:
10.1109/JSSC.2020.3045168.
66
[16] H. -W. Lee and C. Kim, "Survey and Analysis of Delay-Locked Loops Used in
DRAM Interfaces," in IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 22, no. 4, pp. 701-711, April 2014, doi:
10.1109/TVLSI.2013.2252473.
[17] T. Hamamoto, K. Furutani, T. Kubo, S. Kawasaki, H. Iga, T. Kono, Y. Konishi and
T. Yoshihara., "A 667-Mb/s operating digital DLL architecture for 512-Mb DDR
SDRAM," in IEEE Journal of Solid-State Circuits, vol. 39, no. 1, pp. 194-206, Jan.
2004, doi: 10.1109/JSSC.2003.820851.
[18] J. Yang, J. -Y. Lee, S. -J. Lim and H. -M. Bae, "Phase-Rotator-Based All-Digital
Phase-Locked Loop for a Spread-Spectrum Clock Generator," in IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 11, pp. 880-
884, Nov. 2014, doi: 10.1109/TCSII.2014.2356893.
[19] S. Aditya and S. Moorthi, "A low jitter wide tuning range phase locked loop with
low power consumption in 180nm CMOS technology," 2013 IEEE Asia Pacific
Conference on Postgraduate Research in Microelectronics and Electronics
(PrimeAsia), Visakhapatnam, India, 2013, pp. 228-232, doi:
10.1109/PrimeAsia.2013.6731211.
[20] J. Jasielski, S. Kuta, W. Machowski and W. Kołodziejski, "An analog dual delay
locked loop using coarse and fine programmable delay elements," Proceedings of
the 20th International Conference Mixed Design of Integrated Circuits and
Systems - MIXDES 2013, Gdynia, Poland, 2013, pp. 185-190.
[21] Hsiang-Hui Chang and Shen-Iuan Liu, "A wide-range and fast-locking all-digital
cycle-controlled delay-locked loop," in IEEE Journal of Solid-State Circuits, vol.
40, no. 3, pp. 661-670, March 2005, doi: 10.1109/JSSC.2005.843596.
67
[22] Yong-Cheol Bae and Gu-Yeon Wei, "A mixed PLL/DLL architecture for low jitter
clock generation," 2004 IEEE International Symposium on Circuits and Systems
(ISCAS), Vancouver, BC, Canada, 2004, pp. IV-788, doi:
10.1109/ISCAS.2004.1329122.
[23] M. E. Quchani and M. Maymandi-Nejad, "Design of a Low-Power Linear SARBased All-Digital Delay-Locked Loop," 2019 27th Iranian Conference on
Electrical Engineering (ICEE), Yazd, Iran, 2019, pp. 118-124, doi:
10.1109/IranianCEE.2019.8786365.
[24] D. Kim, M. Park, S. Jang, J. -Y. Song, H. Chi, G. Choi, S. Choi, C. Kim , M. Han,
K. Koo, Y. Kim, D. -U. Lee, J. Lee, K. Kwon, B. Choi, H. Kim, S. Ku, J. Kim, S.
Oh, D. Im, Y. Lee, M. Park, J. Choi, J. Chun and K. Jin, "A 1.1-V 10-nm Class
6.4-Gb/s/Pin 16-Gb DDR5 SDRAM With a Phase Rotator-ILO DLL, High-Speed
SerDes, and DFE/FFE Equalization Scheme for Rx/Tx," in IEEE Journal of SolidState Circuits, vol. 55, no. 1, pp. 167-177, Jan. 2020, doi:
10.1109/JSSC.2019.2948806.
[25] D. -H. Jung, Y. -J. An, K. Ryu, J. -H. Park and S. -O. Jung, "All-Digital FastLocking Delay-Locked Loop Using a Cyclic-Locking Loop for DRAM," in IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 62, no. 11, pp. 1023-
1027, Nov. 2015, doi: 10.1109/TCSII.2015.2456111.
[26] W. -J. Yun, I. Song, H. Jeoung, H. Choi, S.-H. Lee, J.-B. Kim, C.-W. Kim, J.-H.
Choi, S.-J. Jang and J. -S. Choi, "17.7 A digital DLL with hybrid DCC using 2-
step duty error extraction and 180° phase aligner for 2.67Gb/S/pin 16Gb 4-H stack
DDR4 SDRAM with TSVs," 2015 IEEE International Solid-State Circuits
Conference - (ISSCC) Digest of Technical Papers, San Francisco, CA, USA, 2015,
pp. 1-3, doi: 10.1109/ISSCC.2015.7063056.
68
[27] H. -W. Lee, H. Choi, B.-J. Shin, K.-H. Kim, K.-W. Kim, J. Kim, K.-H. Kim, J.-H.
Jung, J.-H. Kim, E.-Y. Park, J.-S. Kim, J.-H. Kim, J.-H. Choi, N. Rye, J.-H. Chun,
Y. Kim, C. Kim, Y.-J. Choi and B.-T. Chung, "A 1.0-ns/1.0-V Delay-Locked Loop
With Racing Mode and Countered CAS Latency Controller for DRAM
Interfaces," in IEEE Journal of Solid-State Circuits, vol. 47, no. 6, pp. 1436-1447,
June 2012, doi: 10.1109/JSSC.2012.2191027.
[28] H. Park, J. Sim, Y. Choi, J. Choi, Y. Kwon and C. Kim, "A 2.4–8 GHz Phase
Rotator Delay-Locked Loop Using Cascading Structure for Direct Input–Output
Phase Detection," in IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 69, no. 3, pp. 794-798, March 2022, doi: 10.1109/TCSII.2021.3113926.
[29] J. -S. Wang, C. -Y. Cheng, P. -Y. Chou and T. -Y. Yang, "A Wide-Range, LowPower, All-Digital Delay-Locked Loop With Cyclic Half-Delay-Line
Architecture," in IEEE Journal of Solid-State Circuits, vol. 50, no. 11, pp. 2635-
2644, Nov. 2015, doi: 10.1109/JSSC.2015.2466443.
[30] C. -Y. Yao, Y. -H. Ho, Y. -Y. Chiu and R. -J. Yang, "Designing a SAR-Based AllDigital Delay-Locked Loop With Constant Acquisition Cycles Using a Resettable
Delay Line," in IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 23, no. 3, pp. 567-574, March 2015, doi:
10.1109/TVLSI.2014.2313131.
[31] E. Bayram, A. F. Aref, M. Saeed and R. Negra, "1.5–3.3 GHz, 0.0077 mm2, 7 mW
All-Digital Delay-Locked Loop With Dead-Zone Free Phase Detector in 0.13μm
CMOS," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65,
no. 1, pp. 39-50, Jan. 2018, doi: 10.1109/TCSI.2017.2715899
指導教授 謝易叡(E-Ray Hsieh) 審核日期 2024-1-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明