博碩士論文 110521058 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:73 、訪客IP:3.144.12.246
姓名 甘偉宏(Wei-Hong Kan)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以自差分模式操作砷化銦鎵/砷化銦鋁單光子雪崩二極體實現光子數解析之研究
(Study of Photon Number Resolving Detection with InGaAs/InAlAs Single-Photon Avalanche Diodes under self-differencing mode)
相關論文
★ 以砷化銦鎵/砷化銦鋁單光子雪崩二極體陣列提升光子數解析性能★ 以正弦閘控操作的砷化銦鎵/砷化銦鋁單光子雪崩二極體實現光子數解析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-1-1以後開放)
摘要(中) 具有光子數解析能力的單光子雪崩二極體能操作在近常溫,且保持較低水平的暗計數率,已成為量子領域中不可或缺的角色。以單光子光達為例,憑藉著對於單光子高靈敏度的特性,實現較遠目標的偵測,但這也導致單光子雪崩二極體易受環境光等非理想因素影響,增加數據處理的難度。如果能進一步將先進技術的光子數解析應用在SPAD上,就能將因環境光造成的微弱崩潰訊號從數據中去除,大幅提高數據的準確性。在上述的應用將其操作頻率提高,代表在相同時間下能偵測的資料量更多,有效增加數據的完整性,但在提升頻率的同時,也會提高一些非理想因素造成的崩潰訊號,增加後期數據處理的難度,因此要將元件操作在高頻且保持低水平的暗計數率,對於元件結構設計與外部電路是個很大的挑戰。
在傳統的閘控模式,元件的崩潰訊號會被內部接面電容產生的電容訊號埋沒,導致須提高操作偏壓才能成功計數到,此時元件可能因過大的電流而飽和,無法解析出光子數。目前已有許多文獻提出成功從電容訊號中萃取出崩潰訊號的方式,如自差分電路和正弦波閘控模式搭配濾波器等,這些消除電容訊號的技術,成功將電容訊號消除讓元件操作在較低的偏壓下,避免元件因過大的雪崩電流達到飽和,以成功實現光子數解析。
由於實驗室之前所使用的自差分電路操作頻率為9.9 MHz,需使用20公尺的延遲線進行延遲,導致訊號經過受到嚴重的衰減,無法將電容訊號完全消除,造成需施加較大的偏壓才能判讀到崩潰訊號,導致暗計數上升且不利於光子數解析量測。為了改善上述問題,本文重新設計適用於高頻的自差分電路,操作頻率從9.9 MHz提升至104.731 MHz,延遲線的長度縮短至3公尺,成功將電容訊號消除至更低的水平,最終成功判讀到更微弱的崩潰訊號,減輕元件受暗計數的影響,對於光子數解析量測有相當大的幫助。
本文利用閘控模式搭配重新設計的自差分電路,利用延遲線較短的優勢,成功將電容訊號水平降至3 mV,雜訊抑制比與先前使用的自差分電路相比,從25 dB提升至37.6 dB。在200 K下,單光子偵測效率達到52 %,並在不同溫度下檢驗光子數解析的性能。為了進一步探討操作頻率對於元件性能的影響,本文分別比較元件在高頻、低頻和不同元件增益對於光子數解析性能的影響,分析元件在高頻與高增益時所會面臨的問題,並提出有效的解決辦法。
摘要(英) Single-photon avalanche diodes(SPADs) with photon-number-resolving (PNR) capability can operate at near-room temperature and maintain a lower level of dark count rate, making them indispensable in the field of quantum research. Taking single-photon lidar(SPL) as an example, these devices utilize their high sensitivity to single photon to enable the detection of distant targets. However, this sensitivity also makes SPADs susceptible to non-ideal factors such as ambient light, which increases the difficulty of data processing. If further equipping SPADs the capability of PNR with an advanced technique, it becomes possible to eliminate the weak avalanche signals caused by ambient light from the data, significantly improving data accuracy. In the above applications, increasing the operating frequency of SPADs means being able to detect a larger amount of data within the same time, effectively enhancing data integrity. However, while increasing the frequency, it also amplifies the avalanche signals caused by non-ideal factors, thereby increasing the difficulty of post-processing the data. Therefore, operating the device at high frequencies while maintaining a low level of dark count rates poses a significant challenge in terms of device structure design and external circuitry.
In the traditional gated-mode, the avalanche signals of the device can be buried by the capacitance signal generated by the internal junction capacitance. This requires increasing the excess bias to successfully count the signals. However, at higher excess bias, the device may saturate due to excessive current, making it unable to resolve the photon number. Currently, there are many studies that have proposed successful methods to extract the avalanche signals from the capacitive signal. Techniques such as self-differencing(SD) circuits and sinusoidal gate-mode with filters have been used. These techniques eliminate the capacitance signal and allow the device to operate at lower excess bias, avoiding saturation caused by excessive avalanche current and enabling successful PNR.
Due to the 9.9 MHz operating frequency of the SD circuit used in the laboratory, a 20 meters delay line was required for delay, resulting in severe signal attenuation. The capacitance signal could not be completely eliminated, necessitating a higher bias voltage for the detection of breakdown signals. This led to an increase in dark counts and posed challenges for PNR measurements. To address these issues, this study redesigned a SD circuit suitable for high frequency, increasing the operating frequency from 9.9 MHz to 104.731 MHz. The length of the delay line was shortened to 3 meters, successfully reducing the capacitance signal to a lower level. As a result, weaker breakdown signals could be detected, mitigating the impact of dark counts on the component and significantly aiding in PNR measurements.
This study employed gated-mode with a redesigned SD circuit, taking advantage of the shorter delay line to successfully reduce the capacitance signal to 3 mV. The noise suppression ratio increased from 25 dB to 37.6 dB compared to the previously used SD circuit. At 200 K, the single-photon detection efficiency(SPDE) reached 52 %, and the performance of PNR was evaluated at different temperatures. To further explore the impact of operating frequency on the component′s performance, the study compared the effects at high and low frequencies, as well as the influence of different component gains on PNR. The analysis addressed challenges faced by the component at both high frequencies and high gains, proposing effective solutions.
關鍵字(中) ★ 單光子雪崩二極體
★ 自差分電路
★ 光子數解析
關鍵字(英) ★ Single Photon Avalanche Diode
★ Self-differencing
★ Photon Number Resolving
論文目次 摘要 i
ABSTRACT iii
誌謝 v
目錄 vii
圖目錄 xi
表目錄 xvi
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 光偵測器的演進 3
1.3.1 光電倍增管(Photomultiplier tube, PMT) 3
1.3.2 PIN光電二極體(PIN photodiode) 4
1.3.3 雪崩光電二極體(Avalanche photodiode, APD) 5
1.3.4 單光子雪崩二極體(Single-photon avalanche photodiode, SPAD) 5
1.4 單光子雪崩二極體應用 6
1.4.1 單光子光達(Single-photon LiDAR, SPL) 6
1.4.2 量子密鑰分發(Quantum key distribution, QKD) 8
第二章 文獻探討 11
2.1 電容訊號消除技術 11
2.1.1自差分電路(Self-differencing circuit) 11
2.1.2光學自差分(Optical self-balancing) 12
2.1.3共模消除技術(Common-mode cancellation technology) 14
2.1.4諧波減法技術(Harmonic subtraction) 15
2.2 光子數解析技術(Photon number resolving technology, PNR technology) 17
2.2.1 以元件自身能力(Inherent-capability) 17
2.2.2 空間複用(Spatial-multiplexing) 22
2.2.3 時間複用(Time-multiplexing) 24
2.3 操作頻率對於元件特性影響 26
第三章 單光子雪崩二極體原理及介紹 29
3.1 元件基本特性 29
3.1.1 電流電壓特性與操作原理 29
3.1.2 崩潰機制 31
3.1.3 磊晶結構 33
3.2 元件截止電路 40
3.2.1 自由運行模式電路(Free-running mode circuit) 40
3.2.2 閘控模式電路(Gated-mode circuit) 43
3.3 元件重要參數特性 45
3.3.1 暗計數(Dark count rate, DCR) 45
3.3.2 單光子偵測效率(Single-photon detection efficiency, SPDE) 47
3.3.3 二次脈衝效應(Afterpulsing effect) 49
3.3.4 時基誤差(Timing jitter) 50
3.3.5 光子數解析(Photon number resolving, PNR) 51
第四章 量測系統架構及實驗方法 56
4.1 自差分電路設計及操作 56
4.2 元件電流電壓量測 61
4.3 暗計數量測 63
4.4 單光子偵測效率量測 64
4.5 二次脈衝效應量測 66
4.6 時基誤差量測 68
4.7 光子數解析量測 70
第五章 量測結果與討論 72
5.1 電流電壓量測 72
5.2元件崩潰訊號 76
5.3 暗計數量測 79
5.4 單光子偵測效率量測 83
5.5 二次脈衝效應量測 87
5.6 時基誤差量測 90
5.7 光子數解析量測 92
5.8 變頻量測 107
5.8.1 元件崩潰訊號 107
5.8.2 暗計數量測 109
5.8.3 二次脈衝效應量測 110
5.8.4 時基誤差量測 111
5.8.5 光子數解析量測 113
5.9 不同M-layer元件特性比較 121
5.9.1 元件崩潰訊號 121
5.9.2 暗計數量測 123
5.9.3 單光子偵測效率量測 124
5.9.4 二次脈衝效應量測 128
5.9.5 光子數解析量測 129
第六章 結論與未來展望 136
參考文獻 138
附錄A 143
附錄B 146
參考文獻 T. Bednarski, et al., “Calibration of photomultiplier gain used in the J-PET detector,” Bio-Algorithms and Med-Systems, vol. 10, no. 1, pp. 13-17, December 2013.
S. Okhonin, et al., “A dynamic operation of a PIN photodiode,” Appl. Phys. Lett. 106, 031115, 2015.
L. E. Tarof, et al., “Planer InP/InGaAs avalanche photodetectors with partial charge sheet in device periphery,” Appl. Phys. 57, pp. 670-672, 1990.
Joshua Rapp, et al., “Advances in Single-Photon Lidar for Autonomous Vehicles: Working principles, challenges, and recent advances,” IEEE Signal Processing Magazine, vol. 37, pp. 62-71, July, 2020.
G. Mandlburger, H. Lehner, and N. Pfeifer, “A COMPARISON OF SINGLE PHOTON AND FULL WAVEFORM LIDAR,” ISPRS Ann. Photogramm. Remote. Sens., vol. IV-2/W5, pp. 397-404, May, 2019.
Xiaowei Yu, et al., “Comparing features of single and multi-photon lidar in boreal forests,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 168, pp. 268-276, August, 2020.
Jutzi, Boris, “Less Photons for More LiDAR? A Review from Multi-Photon Detection to Single Photon Detection,” 56th Photogrammetric Week, University of Stuttgart, Germany, September, 2017.
Zeyu Bao, et al., “Laser ranging at few-photon level by photon-number-resolving detection,” Appl. Opt. 53, pp. 3908-3912, February, 2014.
Stock, Erik, “Self-organized Quantum Dots for Single Photon Sources”, 10.14279/depositonce-2721, 2011.
Jun Zhang, et al., “2.23 GHz gating InGaAs/InP single-photon avalanche diode for quantum key distribution,” Proc. SPIE 7681, Advanced Photon Counting Techniques IV, April, 2010.
A. Koehler, et al., “Best-Practice Criteria for Practical Security of Self-Differencing Avalanche Detectors in Quantum Key Distribution,” Phys.Rev. Applied 9, pp. 044027, April, 2018.
Guang Wu, et al., “Photon-number-resolving detection based on InGaAs/InP avalanche photodiode in the sub-saturated mode,” Opt. Express 17, pp. 18782-18787, 2009.
J. C. Campbell, et al., “ Common-Mode Cancellation in Sinusoidal Gating With Balanced InGaAs/InP Single Photon Avalanche Diodes,” IEEE Journal of Quantum Electronics, vol. 48, no. 12, pp. 1505-1511, December, 2012.
Joshua C. Bienfang, et al., “Characterization of an advanced harmonic subtraction single-photon detection system based on an InGaAs/InP avalanche diode,” Proc. SPIE 9858, Advanced Photon Counting Techniques X, 98580Q, May, 2016.
Kardynał, B, et al., “An avalanche‐photodiode-based photon-number-resolving detector,” Nature Photon 2, pp. 425–428, March, 2008.
Y. Jian et al., “Photon-number-counting with an InGaAs/InP Avalanche Photodiode by Optical Self-balancing,” Conference on Lasers and Electro-Optics, 2010.
Y. Liang, et al., “High-Speed Photon-Number Resolving With Sinusoidally Gated Multipixel Photon Counters,” IEEE Photonics Technology Letters, vol. 24, no. 20, pp. 1852-1855, October, 2012.
Dary Achilles, et al., “Photon number resolving detection using time-multiplexing,” Journal of Modern Optics, vol. (9-10), November, 2003.
M. J. Fitch, et al., “Photon-number resolution using time-multiplexed single-photon detections,” Phys. Rev. A 68, 043814, October, 2003.
Mark A. ltzler, et al., “High-rate photon counting with geiger-mode APDs,” IEEE Photonic Society 24th Annual Meeting, VA, USA, 2011.
Z. L. Yuan, et al., “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 23, July, 2007.
F. Signorelli, et al., “Low noise InGaAs/InP SPAD for fiber-based quantum applications,” IEEE Photonics Conference, Vancouver, Canada, 2021.
Alberto Tosi, et al., “Low dark count rate and low timing jitter InGaAs/InP Single-Photon Avalanche Diode,” 44th IEEE European Solid State Device Research Conference, Venice Lido, Italy, 2014.
F. Signorelli et al., “InGaAs/InP SPAD detecting single photons at 1550 nm with up to 50% efficiency and low noise,” IEEE international Electron Devices Meeting, San Francisco, USA, 2021.
Y. S. Lee et al., "In0.52Al0.48As Based Single Photon Avalanche Diodes With Stepped E-Field in Multiplication Layers and High Efficiency Beyond 60%," IEEE Journal of Selected Topics in Quantum Electronics, vol. 28, no. 2: Optical Detectors, pp. 1-7, March-April 2022.
F. Acerbi, et al., "Design Criteria for InGaAs/InP Single-Photon Avalanche Diode," IEEE Photonics Journal, vol. 5, no. 2, pp. 6800209-6800209, April 2013.
A. Lacaita, et al., “Single-photon detection beyond 1μm: performance of commercially avalanche InGaAs/InP detection,” Applied Optics, vol. 35, no. 16, June, 1996.
P. Kleinow, et al., “Experimental investigation of the charge-layer doping level in InGaAs/InAlAs avalanche photodiodes,” Infrared Physics & Technology, vol. 71, pp. 298-302, July, 2015.
Siyu Cao, et al., “Theoretical Analysis of InGaAs/InAlAs Single-Photon Avalanche Photodiodes,” Nanoscale Research Letters, vol. 14, no. 1, December, 2019.
K. Lee, et al., "Analysis of InGaAs/InP Single-Photon Avalanche Diodes With the Multiplication Width Variation," IEEE Photonics Technology Letters, vol. 26, no. 10, pp. 999-1002, May, 2014.
S. Cova, et al., “Avalanche photodiodes and quenching circuits for single-photon detection,” Applied Optics, vol. 35, no. 12, April, 1996.
X. Jiang, et al, "InGaAs/InP single photon avalanche diodes with negative feedback," IEEE Photonics Conference 2012, Burlingame, CA, USA, 2012.
Xudong Jiang, et al., “Shortwave infrared negative feedback avalanche diodes and solid-state photomultipliers,” Optical Engineering, vol. 53, issue 8, June, 2014.
Mark A. ltzler, et al., “Inp-based negative feedback avalanche diodes,” Integrated Optoelectronic Devices, California, United States, 2009.
W. Shockley, et al., “Statistics of the Recombination of Holes and Electrons,” Phys. Rev. 87, issue 5, September, 1952.
A. Tosi, et al., “Low-Noise, Low-Jitter, High Detection Efficiency InGaAs/InP Single-Photon Avalanche Diode,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 20, no. 6, pp. 192-197, November – December, 2014.
Xiuliang Chen, et al., “Photon-number resolving performance of the InGaAs/InP avalanche photodiode with short gates,” Appl. Phys., Lett. 28, September, 2009.
Tingting He, et al., “High photon detection efficiency InGaAs/InP single photon avalanche diode at 250 K,” Journal of Semiconductors, vol. 43, no. 10, May, 2022.
Y. S. Lee et al., “Neat Temporal Performance of InGaAs/InAlAs single photon avalanche diode with stepwise electric field in multiplication layers,” IEEE Access, vol. 9, pp. 32979-32985, February, 2021.
Jishen Zhang et al., “High-performance InGaAs/InAlAs single-photon avalanche diode with a triple-mesa structure for near-infrared photon detection,” Opt. Lett. 46, issue 11, pp. 2670-2673, June, 2021.
Xiao Meng et al., “1550 nm InGaAs/InAlAs single photon avalanche diode at room temperature,” Opt. Express 22, issue 19, pp. 22608-22615, September, 2014.
吳淇賢,「自差分電路操作砷化銦鎵/砷化銦鋁單光子雪崩崩潰二極體的分析與應用」,國立中央大學,碩士論文,民國111年。
L. C. Comandar, et al., “Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550 nm,” Journal of Applied Physics 28, vol. 117, issue 8, February, 2015.
Z. L. Yuan, et al., “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 23, vol. 91, issue 4, July, 2007.
Chen. X, et al., “Temporal and spatial multiplexed infrared single-photon counter based on high-speed avalanche photodiode,” Sci Rep 7, 44600, December, 2016.
A. Tosi, et al., “Active Area Uniformity of InGaAs/InP Single-Photon Avalanche Diodes,” IEEE Photonics Journal, vol. 3, no. 1, pp. 31-41, February, 2011.
指導教授 許晉瑋 李依珊 審核日期 2024-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明