博碩士論文 110521073 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:3.139.235.81
姓名 朱國豪(Guo-Hao Zhu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於微電網韌性之互聯多微電網分散式能源管理最佳化調度策略
(Optimal Dispatching Strategy for Interconnected Multi-Microgrids Decentralized Energy Management Based on Microgrid Resilience)
相關論文
★ 高效能電子轉向控制器設計★ 微電網能源管理系統優化調度基於螢火蟲移動迴歸策略
★ 以半區間法為基礎之最大功率追蹤技術於能源轉換系統之設計★ 智慧型電力品質事件辨識技術於分散式能源 之監測辨識系統開發
★ 以自適應性線性濾波器與頻率檢測法為基礎之並聯主動式電力濾波器設計★ 以互補式單側多脈波寬度調變之低電流漣波高增益比昇壓轉換器研製
★ 以類神經網路為基礎之時頻域混合交流電弧爐模型於電力品質分析之應用★ 以虛擬同步發電機為基礎之微電網轉換器控制算法設計
★ 以IEEE 1459標準為基礎之選擇性補償策略應用於並聯式主動電力濾波器設計★ 結合雙二階廣義積分法與鎖頻迴路為基礎 之串聯式主動電力濾波器設計
★ 微電網與市電併聯之同步控制器設計★ 以自適應性為基礎之遞迴式最小二乘方法應用於配電型靜態同步補償器設計
★ 磁共振式無線功率傳輸系統之線圈及鐵氧體設計與分析★ 具共振頻率切換之多輸出無線功率傳輸裝置研製
★ 高功率雷射源之切換式電源供應器★ 應用於微電網故障保護之專家系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著微電網的快速發展,越來越多的新社區開始建設微電網。這些微電網可以相互連接,形成互聯微電網,並利用能源管理系統提高能源利用率和經濟性。本研究旨在透過電力調度平衡多個微電網的供電可靠度,根據各個微電網所評估之剩餘供電時間進行電力分配。供電時間較長的微電網會根據其儲能系統容量向整體互聯微電網的負載輸出更多的電力,使得各個微電網的剩餘供電時間趨近。同時,本研究結合分散式最佳化方法,達成在併網互聯狀態下的成本最佳化。在調度過程中,部分電力會被預留作為斷電時的備用電源,以提高微電網的供電可靠度。
本研究使用MATLAB模擬本文電力調度策略的可行性。在實作方面,使用C語言實現Modbus通訊協定和相關演算法的編寫,並在中央大學的互聯微電網場域中設置搭載該程式的工業電腦,最終驗證了演算法的可行性以及調度策略對系統供電可靠度的優化結果。
摘要(英) With the rapid development of microgrids, an increasing number of new communities have begun to construct microgrids. These microgrids can interconnect with each other to form an interconnected microgrid and utilize energy management systems to improve energy efficiency and economics. This study aims to balance the supply reliability of multiple microgrids through power dispatching, allocating power based on the assessed remaining supply time of each microgrid. Microgrids with longer supply time will output more power to the overall interconnected microgrid load based on their energy storage system capacity, thereby equalizing the remaining supply time of each microgrid. Additionally, this study combines distributed optimization methods to achieve cost optimization in the context of interconnected microgrids. During dispatching, a portion of the power is reserved as backup power in case of power outages, enhancing the supply reliability of the microgrids.
MATLAB is used in this study to simulate the feasibility of the proposed power dispatching strategy. In terms of implementation, the Modbus communication protocol and related algorithms are implemented using the C language. An industrial computer equipped with this program is deployed in the field of the interconnected microgrid at Central University to validate the feasibility of the algorithms and the optimization results of the scheduling strategy on the system′s supply reliability.
關鍵字(中) ★ 多重微電網
★ 分散式運算
★ 韌性調度管理
★ 電力調度策略
關鍵字(英) ★ multiple microgrids
★ decentralized computing
★ resilience dispatching management
★ power dispatching strategy
論文目次 論文摘要 I
ABSTRACT II
致謝 IV
目錄 V
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1-1研究背景與動機 1
1-2 文獻探討 2
1-3 論文大綱 4
第二章 微電網電力調度架構 5
2-1 微電網系統架構 5
2-1-1 併網狀態之微電網系統架構 5
2-1-2 孤島狀態之微電網系統架構 7
2-1-3 互聯狀態之多微電網系統架構 8
2-2 電力調度之資料處理架構 11
2-2-1 集中式運算架構 11
2-2-2 分散式運算架構 12
2-2-3 集中式與分散式運算架構之比較 13
2-2-4 基於分散式運算之多微電網通訊架構 15
第三章 互聯多微電網之能源管理調度策略 17
3-1 微電網運作之成本規劃 17
3-1-1 儲能系統 17
3-1-2 太陽能系統 21
3-1-3 市電成本 22
3-1-4 燃料電池系統 23
3-2 多微電網之成本最佳化 25
3-2-1 目標函數與限制函數 25
3-2-2 異步分散粒子群演算法 27
3-3 多微電網能源管理系統 32
3-3-1 供電可靠度指標 32
3-3-2 儲能系統輸出上下限 33
3-3-3 電力調度命令計算方法 40
3-3-4 負載分級調度策略 41
第四章 互聯多微電網之能源管理調度結果 44
4-1 實驗場域之互聯多微電網介紹 44
4-2 模擬情境一 47
4-3 模擬情境二 52
4-4 模擬情境三 55
4-4 模擬情境四 58
4-5 場域驗證一 62
4-6 場域驗證二 63
第五章 結論與未來研究方向 67
5-1 結論 67
5-2 未來研究方向 67
參考文獻 69
參考文獻 [1] Wang, W., Wang, D., Jia, H., Chen, Z., Guo, B., Zhou, H., & Fan, M. (2016). Review of steady-state analysis of typical regional integrated energy system under the background of energy internet. Proceedings of the CSEE, 36(12), 3292-3305.
[2] Jiang, Y., Wan, C., Chen, C., Shahidehpour, M., & Song, Y. (2019). A hybrid stochastic-interval operation strategy for multi-energy microgrids. IEEE Transactions on Smart Grid, 11(1), 440-456.
[3] Chen, H., Gao, L., Zhang, Y., & Zhao, C. (2022). Optimal scheduling strategy of a regional integrated energy system considering renewable energy uncertainty and heat network transmission characteristics. Energy Reports, 8, 7691-7703.
[4] Zhao, J., Wang, W., Guo, C., & Feng, H. (2022, February). Multi-energy Microgrid Group Planning Hierarchical Collaborative Optimization Configuration. In 2022 International Conference on Power Energy Systems and Applications (ICoPESA) (pp. 455-462). IEEE.
[5] Ladumor, D. P., Trivedi, I. N., Bhesdadiya, R. H., & Jangir, P. (2017, February). A grey wolf optimizer algorithm for Voltage Stability Enhancement. In 2017 Third International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB) (pp. 278-282). IEEE.
[6] Li, P., Xu, D., Zhou, Z., Lee, W. J., & Zhao, B. (2015). Stochastic optimal operation of microgrid based on chaotic binary particle swarm optimization. IEEE Transactions on Smart Grid, 7(1), 66-73.
[7] Wang, Z. J., Zhan, Z. H., Yu, W. J., Lin, Y., Zhang, J., Gu, T. L., & Zhang, J. (2019). Dynamic group learning distributed particle swarm optimization for large-scale optimization and its application in cloud workflow scheduling. IEEE transactions on cybernetics, 50(6), 2715-2729.
[8] Gionfra, N., Sandou, G., Siguerdidjane, H., Loevenbruck, P., & Faille, D. (2017, August). A novel distributed particle swarm optimization algorithm for the optimal power flow problem. In 2017 IEEE Conference on Control Technology and Applications (CCTA) (pp. 656-661). IEEE.
[9] Zhang, Y., Xiao, J., Yang, J., Xu, B., Li, R., Li, Y., & Wang, J. (2021, July). Multi-time Scale Dispatch of Distribution Network and Multi-microgrid with Renewable Energy Access. In 2021 IEEE 4th International Conference on Big Data and Artificial Intelligence (BDAI) (pp. 154-159). IEEE.
[10] Pérez-Flores, A. C., Antonio, J. D. M., Olivares-Peregrino, V. H., Jiménez-Grajales, H. R., Claudio-Sanchez, A., & Ramírez, G. V. G. (2021). Microgrid energy management with asynchronous decentralized particle swarm optimization. IEEE Access, 9, 69588-69600.
[11] Fan, L., Luo, S., Shao, L., Shao, N., Sun, Z., & Xu, C. (2021, July). Coordinated Optimal Operation for Building Microgrid Considering Hybrid Storage and Demand Response. In 2021 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia) (pp. 1080-1085). IEEE.
[12] Zhang, L., Yu, Y., Li, B., Qian, X., Zhang, S., Wang, X., ... & Chen, M. (2021). Improved cycle aging cost model for battery energy storage systems considering more accurate battery life degradation. Ieee Access, 10, 297-307.
[13] Liu, Z., Yi, Y., Yang, J., Tang, W., Zhang, Y., Xie, X., & Ji, T. (2020). Optimal planning and operation of dispatchable active power resources for islanded multi‐microgrids under decentralised collaborative dispatch framework. IET Generation, Transmission & Distribution, 14(3), 408-422.
[14] 台灣電力股份有限公司,發電資訊,再生能源發展概況,中華民國112年。
[15] Yan, Q., & Tu, X. (2022, April). Home Smart Energy Management System for Optimized Electricity Cost Reduction Using Photovoltaic-Powered EV Charging Station. In 2022 7th Asia Conference on Power and Electrical Engineering (ACPEE) (pp. 116-121). IEEE.
[16] Pilot, N., Bedilion, R., Fregosi, D., Hackett, S., Bolen, M., & Stekli, J. (2021, June). Techno-economic Analysis of Novel PV Plant Designs for Extreme Cost Reductions. In 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC) (pp. 1258-1265). IEEE.
[17] 台灣電力股份有限公司,網路櫃檯,時間電價試算評估,中華民國112年。
[18] Dervisoglu, R. (2012). Diagram of a proton conducting solid oxide fuel cell.
[19] 台灣電力股份有限公司,資訊圖表,近十年每戶停電時間,中華民國112年。
[20] 全國法規資料庫,各類場所消防安全設備設置標準,中華民國110年。
[21] 衛生福利部疾病管制署,昆陽辦公大樓發電系統定期維護保養合約書,中華民國108年。
[22] 衛生福利部彰化老人養護中心,發電機定期保養合約書,中華民國110年。
[23] 民權湖觀萊茵區管理委員會,最新消息,現金收支及財務報表,發電機保養合約書,中華民國109年。
指導教授 陳正一(Cheng-I Chen) 審核日期 2023-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明