博碩士論文 110521076 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:3.143.239.43
姓名 黃暄盛(Xuan-Sheng Huang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於虛擬阻抗孤島交流微電網功率分配及其電壓與頻率恢復控制策略之發展
(Development of Power Sharing and Voltage / Frequency Restoration Control Strategy in Islanded AC Microgrid Based on Virtual Impedance)
相關論文
★ 微電網逆變器之智慧型控制策略★ 高頻高電流之雙向直流-直流轉換器設計
★ 應用於三相轉換器之被動元件在線監測與無電流感測三相整流器之系統控制★ 結合零序回授補償與無通訊之載波同步於並聯雙向交直流轉換器之環流抑制
★ 三相Vienna整流器無電壓感測線性非時變直接功率控制★ 具柔切三相六開關反流器之併網及新型垂降控制策略
★ 基於無電流感測三相Vienna整流器之新型電壓判斷成分注入法於平衡及不平衡直流鏈電壓之應用★ 應用於具儲能混合交直流微電網之雙向互連轉換器電壓控制策略
★ 具柔切三相分源逆變器與直交流電壓控制策略研製★ 考慮不平衡電源之三相整流器線性化直接 功率控制之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本文針對獨立運行的交流孤島微電網,側重研究於如何維持多台轉換器之間的功率分配以及微電網電壓與頻率穩定的方法。高度依賴通訊設備傳遞信息的微電網若運行於孤島模式下,發生通訊設備故障、天災等突發狀況使通訊失聯時,集中式或分散式控制的失效,將導致轉換器間功率分配的不均,而第二級控制的失效將導致整體微電網的電壓與頻率劇烈變化。
  為了預防微電網發生突發狀況,本文基於垂降控制法提出了一種無通訊功率分配控制。在分散式再生能源轉換器併網下輸出功率時,於初級控制中估算轉換器與責任分界點之間的線路阻抗,並使用負虛擬阻抗加以消除,使微電網進入孤島模式後達成功率自主分配的效果。隨後,透過線路阻抗消除的效應,將第二級控制中的電壓與頻率恢復機制加入本地控制器中,恢復垂降控制於孤島模式運行下所產生的電壓與頻率穩態誤差,以維持孤島微電網的穩定運行。
  然而,線路阻抗估算於弱電網下將難以計算,這將影響功率分配的性能,而恢復機制於無通訊下,多台轉換器間的補償量未必相同,長時間運行將造成功率分配的不均。於此本文提出一種分散式的通訊控制策略,利用它台轉換器資訊實現弱電網下的線路阻抗估算,而恢復機制中引入觸發條件的控制策略,結束補償後將多台轉換器之補償量平均化,使各台轉換器之補償量達成一致,以維持功率分配。
  為因應再生能源發電佔比的提升,本文基於虛擬阻抗孤島模式的垂降控制下再加入虛擬慣量,於加減載中降低系統頻率變化,提高整體孤島微電網的可靠性,然而當虛擬阻抗與虛擬慣量同時存在時,虛擬慣量產生的功率擾動將引入虛擬阻抗所補償的電壓命令中,而導致轉換器之輸出功率發散,於此本文亦提出解決方案以避免此情況發生。為驗證所提方法之穩定性,本文使用了基於阻抗穩定性準則以及小訊號穩定度分析證明所提方法之穩定性,提供設計參考,最後於模擬與實作中驗證所提研究方法的可行性。
摘要(英) This thesis focuses on the standalone operation of AC islanded microgrids and explores methods to maintain power sharing between multiple converters and stabilize voltage and frequency in the microgrid. Microgrids that heavily rely on communication devices to exchange information may encounter challenges when operating in islanded mode due to communication failures caused by equipment malfunctions or natural disasters. The failure of centralized or decentralized control can lead to uneven power sharing among converters, and the failure of secondary control can cause severe voltage and frequency fluctuations in the entire microgrid.
To prevent such situations in microgrids, this thesis proposes a communication-less power sharing control based on droop control. When decentralized renewable energy converters are connected to the grid, the primary control estimates the line impedance between converters and the point of common coupling. Negative virtual impedance is then used to eliminate the effect, enabling successful autonomous power sharing when the microgrid enters islanded mode. Furthermore, the local controller incorporates the voltage and frequency restoration mechanisms from the secondary control, leveraging the effects of line impedance elimination to maintain stable voltage and frequency during islanded mode operation, ensuring the stable operation of the islanded microgrid.
However, estimating line impedance in weak grids can be challenging, impacting the performance of power sharing. Additionally, without communication, the compensation among multiple converters in the restoration mechanism may not be uniform, resulting in uneven power sharing over time. To address these issues, a decentralized communication control strategy is proposed in this thesis, utilizing information from neighboring converters to estimate line impedance in weak grids. Moreover, a triggering condition control strategy is introduced in the restoration mechanism to average the compensation among multiple converters after the compensation ends, achieving consistency in compensation and ensuring power sharing stability.
Considering the increasing ratio of renewable energy generation, virtual inertia is incorporated into the droop control of islanded microgrids based on virtual impedance. The virtual inertia reduces system frequency variations during load changes, enhancing the overall reliability of the islanded microgrid. However, the simultaneous existence of virtual impedance and virtual inertia can introduce power disturbances from virtual inertia into the voltage commands compensated by virtual impedance, causing converter output power divergence. To address this issue, this thesis presents a solution to avoid such occurrences. To validate the stability of the proposed methods, this thesis employs impedance stability criteria and small-signal stability analysis, providing design references. Finally, the feasibility of the proposed research methods is verified through simulations and implementations.
關鍵字(中) ★ 併網模式
★ 孤島模式
★ 微電網
★ 垂降控制
★ 虛擬阻抗
★ 第二級控制
★ 虛擬慣量
關鍵字(英) ★ Grid Connected Mode
★ Islanded Mode
★ Microgrid
★ Droop Control
★ Virtual Impedance
★ Secondary Control
★ Virtual Inertia
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 XV
第一章 緒論 1
1-1 研究背景與動機 1
1-2 文獻回顧 2
1-3 本文貢獻 5
1-4 論文大綱 8
第二章 基本轉換器與交流微電網介紹 9
2-1 轉換器控制類型 9
2-2 垂降控制器 11
2-2-1 垂降控制原理 11
2-2-2 孤島與併網模式下的垂降控制器 13
2-2-3 電流估測器 15
2-3 微電網分層控制 17
2-4 併網程序 20
2-5 虛擬同步發電機控制 25
第三章 所提功率分配與恢復機制策略 28
3-1 虛擬阻抗介紹 28
3-2 線路阻抗的估測 31
3-3 功率分配策略 36
3-4 孤島下二級控制的加入 48
第四章 穩定度與理論分析 59
4-1 轉換器等效輸出阻抗 59
4-2 系統穩定性分析 66
第五章 系統規劃與模擬驗證 76
5-1 模擬軟體與系統架構介紹 76
5-2 線路阻抗估測模擬 82
5-2-1 併網程序與功能驗證 82
5-2-2 非理想電網下的線路阻抗估算 86
5-3 功率分配模擬 97
5-4 恢復機制模擬 104
第六章 硬體實現與實作結果 112
6-1 硬體電路與微控制器介紹 112
6-1-1 主電路介紹 112
6-1-2 控制電路介紹 119
6-2 線路阻抗估測實作 122
6-3 功率分配實作 127
6-4 恢復機制實作 131
第七章 結論與未來展望 136
7-1論文內容總結 136
7-2未來研究方向 137
參考文獻 138
參考文獻 [1] J. Rocabert, A. Luna, F. Blaabjerg and P. Rodríguez, "Control of Power Converters in AC Microgrids," IEEE Transactions on Power Electronics, vol. 27, no. 11, pp. 4734-4749, Nov. 2012.
[2] M. C. Chandorkar, D. M. Divan and R. Adapa, "Control of parallel connected inverters in standalone AC supply systems", IEEE Trans. Ind. Applicat., vol. IA-29, pp. 136-143, Jan./Feb. 1993.
[3] M. C. Chandrokar, D. M. Divan and B. Banerjee, "Control of distributed UPS systems," Proceedings of 1994 Power Electronics Specialist Conference - PESC′94, Taipei, Taiwan, 1994.
[4] M. Dai, M. N. Marwali, J. -W. Jung and A. Keyhani, "Power Flow Control of a Single Distributed Generation Unit," IEEE Transactions on Power Electronics, vol. 23, no. 1, pp. 343-352, Jan. 2008.
[5] Y. W. Li and C. -N. Kao, "An Accurate Power Control Strategy for Power-Electronics-Interfaced Distributed Generation Units Operating in a Low-Voltage Multibus Microgrid," IEEE Transactions on Power Electronics, vol. 24, no. 12, pp. 2977-2988, Dec. 2009.
[6] F. Z. Peng, Y. W. Li and L. M. Tolbert, "Control and protection of power electronics interfaced distributed generation systems in a customer-driven microgrid," 2009 IEEE Power & Energy Society General Meeting, Calgary, AB, Canada, 2009, pp. 1-8.
[7] A. Engler, “Applicability of droops in low voltage grids,” Int. J. Distrib. Energy Resources, vol. 1, no. 1, Technology and Science Publisher, Germany, Kassel, 2005.
[8] J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuna and M. Castilla, "Hierarchical Control of Droop-Controlled AC and DC Microgrids—A General Approach Toward Standardization," IEEE Transactions on Industrial Electronics, vol. 58, no. 1, pp. 158-172, Jan. 2011.
[9] Y. -H. Liao, Y. Zhou and X. S. Huang, "A Grid Synchronization Strategy for Micro-Grid System," 2022 IET International Conference on Engineering Technologies and Applications (IET-ICETA), Changhua, Taiwan, 2022, pp. 1-2.
[10] Q. Shafiee, J. M. Guerrero and J. C. Vasquez, "Distributed Secondary Control for Islanded Microgrids—A Novel Approach," IEEE Transactions on Power Electronics, vol. 29, no. 2, pp. 1018-1031, Feb. 2014.
[11] J. W. Simpson-Porco, Q. Shafiee, F. Dörfler, J. C. Vasquez, J. M. Guerrero and F. Bullo, "Secondary Frequency and Voltage Control of Islanded Microgrids via Distributed Averaging," IEEE Transactions on Industrial Electronics, vol. 62, no. 11, pp. 7025-7038, Nov. 2015.
[12] H. -P. Beck and R. Hesse, "Virtual synchronous machine," 2007 9th International Conference on Electrical Power Quality and Utilisation, Barcelona, Spain, 2007, pp. 1-6.
[13] Q. -C. Zhong and G. Weiss, "Synchronverters: Inverters That Mimic Synchronous Generators," IEEE Transactions on Industrial Electronics, vol. 58, no. 4, pp. 1259-1267, April 2011.
[14] J. Liu, Y. Miura and T. Ise, "Comparison of Dynamic Characteristics Between Virtual Synchronous Generator and Droop Control in Inverter-Based Distributed Generators," IEEE Transactions on Power Electronics, vol. 31, no. 5, pp. 3600-3611, May 2016.
[15] X. Meng, J. Liu and Z. Liu, "A Generalized Droop Control for Grid-Supporting Inverter Based on Comparison Between Traditional Droop Control and Virtual Synchronous Generator Control," IEEE Transactions on Power Electronics, vol. 34, no. 6, pp. 5416-5438, June 2019.
[16] K. Jiang, H. Su, H. Lin, K. He, H. Zeng and Y. Che, "A Practical Secondary Frequency Control Strategy for Virtual Synchronous Generator," IEEE Transactions on Smart Grid, vol. 11, no. 3, pp. 2734-2736, May 2020.
[17] H. Xu, X. Zhang, F. Liu, R. Shi, C. Yu and R. Cao, "A Reactive Power Sharing Strategy of VSG Based on Virtual Capacitor Algorithm," IEEE Transactions on Industrial Electronics, vol. 64, no. 9, pp. 7520-7531, Sept. 2017.
[18] H. Mahmood, D. Michaelson and J. Jiang, "Accurate Reactive Power Sharing in an Islanded Microgrid Using Adaptive Virtual Impedances," IEEE Transactions on Power Electronics, vol. 30, no. 3, pp. 1605-1617, March 2015.
[19] X. Liang, C. Andalib-Bin-Karim, W. Li, M. Mitolo and M. N. S. K. Shabbir, "Adaptive Virtual Impedance-Based Reactive Power Sharing in Virtual Synchronous Generator Controlled Microgrids," IEEE Transactions on Industry Applications, vol. 57, no. 1, pp. 46-60, Jan.-Feb. 2021.
[20] A. Rasool, S. Fahad, X. Yan, H. Rasool, M. Jamil and S. Padmanaban, "Reactive Power Matching Through Virtual Variable Impedance for Parallel Virtual Synchronous Generator Control Scheme," IEEE Systems Journal, vol. 17, no. 1, pp. 1453-1464, March 2023.
[21] M. -D. Pham and H. -H. Lee, "Effective Coordinated Virtual Impedance Control for Accurate Power Sharing in Islanded Microgrid," IEEE Transactions on Industrial Electronics, vol. 68, no. 3, pp. 2279-2288, March 2021.
[22] F. Deng, W. Yao, X. Zhang and P. Mattavelli, "A Decentralized Current Sharing Strategy for Islanded Resistive Microgrids Based on Iterative Virtual Impedance Regulation," IEEE Transactions on Industrial Informatics, vol. 18, no. 6, pp. 3958-3969, June 2022.
[23] F. Deng, Y. Li, X. Li, W. Yao, X. Zhang and P. Mattavelli, "A Decentralized Impedance Reshaping Strategy for Balanced, Unbalanced and Harmonic Power Sharing in Islanded Resistive Microgrids," IEEE Transactions on Sustainable Energy, vol. 13, no. 2, pp. 743-754, April 2022.
[24] A. S. Vijay, N. Parth, S. Doolla and M. C. Chandorkar, "An Adaptive Virtual Impedance Control for Improving Power Sharing Among Inverters in Islanded AC Microgrids," IEEE Transactions on Smart Grid, vol. 12, no. 4, pp. 2991-3003, July 2021.
[25] A. S. Vijay, S. Doolla and M. C. Chandorkar, "Varying Negative Sequence Virtual Impedance Adaptively for Enhanced Unbalanced Power Sharing Among DGs in Islanded AC Microgrids," IEEE Transactions on Energy Conversion, vol. 36, no. 4, pp. 3271-3281, Dec. 2021.
[26] P. Sreekumar and V. Khadkikar, "A New Virtual Harmonic Impedance Scheme for Harmonic Power Sharing in an Islanded Microgrid," IEEE Transactions on Power Delivery, vol. 31, no. 3, pp. 936-945, June 2016.
[27] R. Razi, H. Iman-Eini and M. Hamzeh, "An impedance-power droop method for accurate power sharing in Islanded resistive Microgrids", IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 8, no. 4, pp. 3763-3771, Dec. 2020.
[28] R. Razi, H. Iman-Eini, M. Hamzeh and S. Bacha, "A novel extended impedance-power droop for accurate active and reactive power sharing in a multi-bus Microgrid with complex impedances", IEEE Trans. Smart Grid, vol. 11, no. 5, pp. 3795-3804, Sep. 2020.
[29] P. Sreekumar and V. Khadkikar, "Direct Control of the Inverter Impedance to Achieve Controllable Harmonic Sharing in the Islanded Microgrid," IEEE Transactions on Industrial Electronics, vol. 64, no. 1, pp. 827-837, Jan. 2017.
[30] A. H. Yazdavar, M. A. Azzouz and E. F. El-Saadany, "A Novel Decentralized Control Scheme for Enhanced Nonlinear Load Sharing and Power Quality in Islanded Microgrids," IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 29-39, Jan. 2019.
[31] Z. Wang et al., "Adaptive Harmonic Impedance Reshaping Control Strategy Based on a Consensus Algorithm for Harmonic Sharing and Power Quality Improvement in Microgrids With Complex Feeder Networks," IEEE Transactions on Smart Grid, vol. 13, no. 1, pp. 47-57, Jan. 2022.
[32] Y. Khayat et al., "On the Secondary Control Architectures of AC Microgrids: An Overview," IEEE Transactions on Power Electronics, vol. 35, no. 6, pp. 6482-6500, June 2020.
[33] M. Yazdanian and A. Mehrizi-Sani, "Washout Filter-Based Power Sharing," IEEE Transactions on Smart Grid, vol. 7, no. 2, pp. 967-968, March 2016.
[34] Y. Han, H. Li, L. Xu, X. Zhao and J. M. Guerrero, "Analysis of Washout Filter-Based Power Sharing Strategy—An Equivalent Secondary Controller for Islanded Microgrid Without LBC Lines," IEEE Transactions on Smart Grid, vol. 9, no. 5, pp. 4061-4076, Sept. 2018.
[35] M. Castilla, A. Camacho, J. Miret, M. Velasco and P. Martí, "Local Secondary Control for Inverter-Based Islanded Microgrids With Accurate Active Power Sharing Under High-Load Conditions," IEEE Transactions on Industrial Electronics, vol. 66, no. 4, pp. 2529-2539, April 2019.
[36] J. M. Rey, P. Martí, M. Velasco, J. Miret and M. Castilla, "Secondary Switched Control With no Communications for Islanded Microgrids," IEEE Transactions on Industrial Electronics, vol. 64, no. 11, pp. 8534-8545, Nov. 2017.
[37] H. Xin, R. Zhao, L. Zhang, Z. Wang, K. P. Wong and W. Wei, "A Decentralized Hierarchical Control Structure and Self-Optimizing Control Strategy for F-P Type DGs in Islanded Microgrids," IEEE Transactions on Smart Grid, vol. 7, no. 1, pp. 3-5, Jan. 2016.
[38] H. Xin, L. Zhang, Z. Wang, D. Gan and K. P. Wong, "Control of Island AC Microgrids Using a Fully Distributed Approach," IEEE Transactions on Smart Grid, vol. 6, no. 2, pp. 943-945, March 2015.
[39] Y. Khayat et al., "Decentralized Frequency Control of AC Microgrids: An Estimation-Based Consensus Approach," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 5, pp. 5183-5191, Oct. 2021.
[40] B. Liu, T. Wu, Z. Liu and J. Liu, "A Small-AC-Signal Injection-Based Decentralized Secondary Frequency Control for Droop-Controlled Islanded Microgrids," IEEE Transactions on Power Electronics, vol. 35, no. 11, pp. 11634-11651, Nov. 2020.
[41] W. Gu, G. Lou, W. Tan and X. Yuan, "A Nonlinear State Estimator-Based Decentralized Secondary Voltage Control Scheme for Autonomous Microgrids," IEEE Transactions on Power Systems, vol. 32, no. 6, pp. 4794-4804, Nov. 2017.
[42] Y. Fan, G. Hu and M. Egerstedt, "Distributed Reactive Power Sharing Control for Microgrids With Event-Triggered Communication," IEEE Transactions on Control Systems Technology, vol. 25, no. 1, pp. 118-128, Jan. 2017.
[43] B. Abdolmaleki, Q. Shafiee, A. R. Seifi, M. M. Arefi and F. Blaabjerg, "A Zeno-Free Event-Triggered Secondary Control for AC Microgrids," IEEE Transactions on Smart Grid, vol. 11, no. 3, pp. 1905-1916, May 2020.
[44] J. Lai, X. Lu, X. Yu and A. Monti, "Stochastic Distributed Secondary Control for AC Microgrids via Event-Triggered Communication," IEEE Transactions on Smart Grid, vol. 11, no. 4, pp. 2746-2759, July 2020.
[45] C. Yu, H. Zhou, X. Lu, J. Lai and G. -P. Liu, "Distributed Optimal Synchronization Rate Control for AC Microgrids Under Event-Triggered Mechanism," IEEE Transactions on Power Systems, vol. 36, no. 3, pp. 1780-1793, May 2021.
[46] D. Ma, M. Liu, H. Zhang, R. Wang and X. Xie, "Accurate Power Sharing and Voltage Regulation for AC Microgrids: An Event-Triggered Coordinated Control Approach," IEEE Transactions on Cybernetics, vol. 52, no. 12, pp. 13001-13011, Dec. 2022.
[47] F. Deng, W. Yao, X. Zhang, Y. Tang and P. Mattavelli, "Review of Impedance-Reshaping-Based Power Sharing Strategies in Islanded AC Microgrids," IEEE Transactions on Smart Grid, vol. 14, no. 3, pp. 1692-1707, May 2023.
[48] Y. Guan, J. M. Guerrero, X. Zhao, J. C. Vasquez and X. Guo, "A New Way of Controlling Parallel-Connected Inverters by Using Synchronous-Reference-Frame Virtual Impedance Loop—Part I: Control Principle," IEEE Transactions on Power Electronics, vol. 31, no. 6, pp. 4576-4593, June 2016.
[49] Y. Panov and M. Jovanovic, "Practical issues of input/output impedance measurements in switching power supplies and application of measured data to stability analysis," Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, 2005. APEC 2005., Austin, TX, USA, 2005.
[50] J. Sun, "Impedance-Based Stability Criterion for Grid-Connected Inverters," IEEE Transactions on Power Electronics, vol. 26, no. 11, pp. 3075-3078, Nov. 2011.

[51] 周郢。「具柔切三相六開關反流器之併網及新型垂降控制策略」。碩士論文,國立中央大學電機工程學系,2022.
[52] Huang, L.; Wu, C.; Zhou, D.; Blaabjerg, F. Impact of Grid Strength and Impedance Characteristics on the Maximum Power Transfer Capability of Grid-Connected Inverters. Appl. Sci. 2021.
[53] L. Lin, H. Ma and Z. Bai, "An Improved Proportional Load-Sharing Strategy for Meshed Parallel Inverters System With Complex Impedances," IEEE Transactions on Power Electronics, vol. 32, no. 9, pp. 7338-7351, Sept. 2017.
[54] E. A. A. Coelho, P. C. Cortizo and P. F. D. Garcia, "Small-signal stability for parallel-connected inverters in stand-alone AC supply systems," IEEE Transactions on Industry Applications, vol. 38, no. 2, pp. 533-542, March-April 2002.
指導教授 廖益弘 審核日期 2023-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明