博碩士論文 110521080 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:66 、訪客IP:18.188.51.137
姓名 賴韋融(Wei-Rong Lai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於具儲能混合交直流微電網之雙向互連轉換器電壓控制策略
(A Voltage Control Strategy of Bidirectional Interlink Converter in Hybrid AC-DC Microgrid with Energy Storage System)
相關論文
★ 微電網逆變器之智慧型控制策略★ 高頻高電流之雙向直流-直流轉換器設計
★ 應用於三相轉換器之被動元件在線監測與無電流感測三相整流器之系統控制★ 結合零序回授補償與無通訊之載波同步於並聯雙向交直流轉換器之環流抑制
★ 三相Vienna整流器無電壓感測線性非時變直接功率控制★ 具柔切三相六開關反流器之併網及新型垂降控制策略
★ 基於無電流感測三相Vienna整流器之新型電壓判斷成分注入法於平衡及不平衡直流鏈電壓之應用★ 基於虛擬阻抗孤島交流微電網功率分配及其電壓與頻率恢復控制策略之發展
★ 具柔切三相分源逆變器與直交流電壓控制策略研製★ 考慮不平衡電源之三相整流器線性化直接 功率控制之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文著重於研發雙向互連轉換器(Bidirectional Interlink Converter, BIC)在交流和直流微電網間的電源管理,當雙向互連轉換器開啟交互控制,交流側和直流側依照各自的垂降控制所建立的功率會透過互連轉換器使兩側微電網功率達成平衡,即全域功率共享(Global Power Sharing, GPS)。以下為本論文之貢獻:
(1)本文提出一種電壓型的垂降控制方案用以實現GPS。此控制策略中,BIC需透過與直流側之間的通訊,得到其功率資訊,來更快速且精準的實現GPS功能。同時並考慮當通訊設備發生故障的情況下,會導致系統可靠性降低,因此本文近一步提出無通訊方案用以實現GPS。
(2)由於在微電網直流側使用儲能系統,本文的BIC控制策略考慮儲能裝置,當微電網整體負載壓力較低時如何從GPS模式切換至充電模式,並通過BIC將多餘的再生能源電力儲存至直流側的儲能裝置中,以提升再生能源的利用率。此外,本文的直流側微電網控制也考慮儲能裝置的電池剩餘容量(State of Charge, SoC),當直流側微電網有多個儲能裝置時,所提控制可使直流側轉換器的輸出實功率能根據SoC進行功率分配。
(3)本文的BIC採用電壓型垂降控制,因此所提出的控制策略能更容易整合微電網分層控制技術中的初級控制和第二級控制。所以,本論文加入虛擬慣量用以改善交流側因控制及負載變動導致的頻率變化率;此外亦加入虛擬阻抗的技術用來改善實虛功解耦合情形及達成虛功分配,第二級控制則是用來恢復系統因垂降控制導致的頻率偏差。
因本文所提出的BIC控制策略使用電壓型垂降控制,此方案能夠在交流側微電網停電時亦可透過BIC持續供電,達成UPS不斷電系統之功能。本研究亦對控制的穩定度進行分析,分析系統參數對穩定度造成的影響,並透過模擬及硬體實作驗證所提方法的可行性。
摘要(英) This thesis focuses on the development of a Bidirectional Interlink Converter (BIC) for power management between alternating current (AC) and direct current (DC) microgrids. When the BIC enables interactive control, the power established by the droop control on both the AC and DC sides will be balanced through the interlink converter, achieving Global Power Sharing (GPS). The contributions of this thesis are as follows:
1. This paper proposes a voltage-source-based droop control scheme to achieve GPS. In this control strategy, the BIC communicates with the DC side to obtain power information, enabling faster and more accurate GPS functionality. Additionally, the paper considers the scenario where communication equipment failure occurs, leading to reduced system reliability. Therefore, an alternative communication-less approach is also presented to achieve GPS.
2. As energy storage systems are often used on the DC side of the microgrid, the BIC control strategy in this paper considers how to switch from GPS mode to charging mode when the overall load pressure on the microgrid is low. The surplus renewable energy is then stored in the energy storage devices on the DC side through the BIC, thereby improving the utilization of renewable energy. Moreover, the DC-side microgrid control in this paper also takes into account the State of Charge (SoC) of the energy storage devices. When there are multiple energy storage devices on the DC side, the proposed control allows power allocation of the DC-side converter based on SoC.
3. The BIC in this paper adopts voltage-source-based droop control, making the proposed control strategy more easily integrated into the primary and secondary control of the hierarchical microgrid control structure. Therefore, this thesis incorporates virtual inertia to improve frequency variation caused by control and load changes on the AC side. Additionally, a virtual impedance method is applied to improve the real and reactive power decoupling as well as reactive power sharing. Simultaneously, the secondary control is utilized to restore the system due to frequency deviation caused by droop control.
Because the BIC control strategy proposed in this paper uses voltage-source-based droop control, this approach can provide continuous power supply through the BIC when the AC-side microgrid experiences an outage, achieving Uninterruptible Power Supply (UPS) functionality. The stability of the proposed control is also analyzed, examining the impact of system parameters on stability, and validating the feasibility of the proposed methods through simulation and hardware implementation.
關鍵字(中) ★ 儲能裝置
★ 垂降控制
★ 雙向互連轉換器
★ 混合交/直流微電網
★ 功率共享
關鍵字(英) ★ Energy Storage System
★ Droop Control
★ Bidirectional Interlink Converter(BIC)
★ Hybrid AC-DC Microgrid
★ Power Sharing
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 XV
第一章 緒論 1
1-1研究背景與動機 1
1-2文獻回顧 2
1-3本論文之貢獻 4
1-4論文內容概述 5
第二章 基本轉換器介紹 6
2-1交流側微電網介紹 6
2-1-1交流側轉換器種類 6
2-1-2交流側微電網控制介紹 8
2-2直流側微電網介紹 13
2-2-1電流/功率模式垂降控制14
2-2-2電壓模式垂降控制 15
2-3雙向互連轉換器介紹 16
2-3-1 Grid-Supporting 17
2-3-2 Grid-Forming 23
2-4同步機制 28
第三章 微電網控制方法 31
3-1微電網分層控制介紹 31
3-2虛擬慣量之控制介紹 34
3-2-1 雙向互連轉換器虛擬慣量之控制 34
3-2-2 交流側虛擬慣量之控制 35
3-3虛擬阻抗之控制介紹 37
3-4頻率及電壓恢復控制 41
第四章 所提之系統控制策略及分析 44
4-1所提之直流側微電網控制策略 44
4-2所提雙向互連轉換器控制策略 51
4-3穩定性分析 58
第五章 系統架構與模擬分析 63
5-1模擬軟體介紹 63
5-2直流側控制模擬結果 66
5-3雙向互連轉換器之電流控制模擬結果 76
5-3-1 雙向互連轉換器之電流控制 76
5-3-2 所提互連轉換器控制策略 84
第六章 硬體電路製作與實驗結果 102
6-1硬體與微控制器介紹 102
6-1-1 硬體設備與電路 102
6-1-2 微控制器介紹 107
6-2直流側控制實作結果 108
6-3雙向互連轉換器控制實作結果 113
第七章 結論與未來展望 127
7-1論文內容總結 127
7-2未來研究方向 128
參考文獻 129
參考文獻 參考文獻
[1]J. Rocabert, A. Luna, F. Blaabjerg and P. Rodríguez, "Control of Power Converters in AC Microgrids," IEEE Transactions on Power Electronics, vol. 27, no. 11, pp. 4734-4749, Nov. 2012.
[2]J. M. Guerrero, J. Matas, L. Garcia De Vicunagarcia De Vicuna, M. Castilla and J. Miret, "Wireless-Control Strategy for Parallel Operation of Distributed-Generation Inverters," IEEE Transactions on Industrial Electronics, vol. 53, no. 5, pp. 1461-1470, Oct. 2006.
[3]J. M. Guerrero, L. Hang and J. Uceda, "Control of Distributed Uninterruptible Power Supply Systems," IEEE Transactions on Industrial Electronics, vol. 55, no. 8, pp. 2845-2859, Aug. 2008.
[4]D. Pattabiraman, R. H. Lasseter. and T. M. Jahns, "Comparison of Grid Following and Grid Forming Control for a High Inverter Penetration Power System," 2018 IEEE Power & Energy Society General Meeting (PESGM), Portland, OR, USA, 2018, pp. 1-5.
[5]W. Wang and M. Barnes, "Power Flow Algorithms for Multi-Terminal VSC-HVDC With Droop Control," in IEEE Transactions on Power Systems, vol. 29, no. 4, pp. 1721-1730, July 2014.
[6]F. Gao et al., "Comparative Stability Analysis of Droop Control Approaches in Voltage-Source-Converter-Based DC Microgrids," IEEE Transactions on Power Electronics, vol. 32, no. 3, pp. 2395-2415, March 2017.
[7]P. Lin et al., "A Distributed Power Management Strategy for Multi-Paralleled Bidirectional Interlinking Converters in Hybrid AC/DC Microgrids," IEEE Transactions on Smart Grid, vol. 10, no. 5, pp. 5696-5711, Sept. 2019.
[8]A. Ordono, E. Unamuno, J. A. Barrena, and J. Paniagua, “Interlinking converters and their contribution to primary regulation: A review,”Int. J. Electr. Power Energy Syst., vol. 111, pp. 44–57, Oct. 2019
[9]Susanto J, Shahnia F, Ghosh A, Rajakaruna S. Interconnected microgrids via back-to-back converters for dynamic frequency support. 2014 Australasian universities power engineering conference, AUPEC 2014; 2014. p. 1–6.
[10]Hu W, Chen H, Yang X, Xu K, Hu P. Control strategy of the bi-directional converter for hybrid AC/DC microgrid. 2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC); 2015. p. 1–5.
[11]Aryani D, Song H. Coordination control strategy for AC/DC hybrid microgrids in stand-alone mode. Energies 2016;9(6):469.
[12]Eajal AA, Abdelwahed MA, El-Saadany EF, Ponnambalam K. A unified approach to the power flow analysis of AC/DC hybrid microgrids. IEEE Trans Sustain Energy 2016;7(3):1145–58.
[13]Loh PC, Li D, Chai YK, Blaabjerg F. Autonomous control of interlinking converter with energy storage in hybrid AC-DC microgrid. IEEE Trans Ind Appl 2013;49(3):1374–82.
[14]Improved control strategy of interlinking converters with synchronous generator characteristic in islanded hybrid AC/DC microgrid. CPSS Trans Power Electron Appl 2017;2(2):149–58.
[15]Chen D, Xu Y, Huang AQ. Integration of DC microgrids as virtual synchronous machines into the AC grid. IEEE Trans Ind Electron 2017;0046(c).
[16]Luo F, Loo KH, Lai YM. A hybrid AC/DC microgrid control scheme with voltagesource inverter-controlled interlinking converters. In: 2016 18th European conference on power electronics and applications. EPE 2016 ECCE Europe; 2016. p. 1–8.
[17]M. Ganjian-Aboukheili, M. Shahabi, Q. Shafiee and J. M. Guerrero, "Seamless Transition of Microgrids Operation From Grid-Connected to Islanded Mode," IEEE Transactions on Smart Grid, vol. 11, no. 3, pp. 2106-2114, May 2020.
[18]T. L. Vandoorn, B. Meersman, J. D. M. De Kooning and L. Vandevelde, "Transition From Islanded to Grid-Connected Mode of Microgrids With Voltage-Based Droop Control," IEEE Transactions on Power Systems, vol. 28, no. 3, pp. 2545-2553, Aug. 2013.
[19]C. -T. Lee, R. -P. Jiang and P. -T. Cheng, "A grid synchronization method for droop controlled distributed energy resources converters," 2011 IEEE Energy Conversion Congress and Exposition, Phoenix, AZ, USA, 2011, pp. 743-749.
[20]周郢。「具柔切三相六開關反流器之併網及新型垂降控制策略」。碩士論文,國立中 央大學電機工程學系,2022.
[21]J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuna and M. Castilla, "Hierarchical Control of Droop-Controlled AC and DC Microgrids—A General Approach Toward Standardization," IEEE Transactions on Industrial Electronics, vol. 58, no. 1, pp. 158-172, Jan. 2011.
[22]J. M. Guerrero, M. Chandorkar, T. -L. Lee and P. C. Loh, "Advanced Control Architectures for Intelligent Microgrids—Part I: Decentralized and Hierarchical Control," IEEE Transactions on Industrial Electronics, vol. 60, no. 4, pp. 1254-1262, April 2013.
[23]"IEEE Std. 1574-2003", IEEE Standard for Interconnecting Distributed Resources With Electric Power Systems.
[24]P. Kundur, Power System Stability and Control, New York, NY, USA:IEEE Press, pp. 1167, 1994.
[25]F. Milano, F. Dörfler, G. Hug, D. J. Hill and G. Verbič, "Foundations and Challenges of Low-Inertia Systems (Invited Paper)," 2018 Power Systems Computation Conference (PSCC), Dublin, Ireland, 2018, pp. 1-25.
[26]J. Paniagua, E. Unamuno and J. A. Barrena, "Dual Inertia-Emulation Control for Interlinking Converters in Grid-Tying Applications," IEEE Transactions on Smart Grid, vol. 12, no. 5, pp. 3868-3876, Sept. 2021.

[27]Y. Sun, X. Hou, J. Yang, H. Han, M. Su and J. M. Guerrero, "New Perspectives on Droop Control in AC Microgrid," IEEE Transactions on Industrial Electronics, vol. 64, no. 7, pp. 5741-5745, July 2017.
[28]Y. Han and J. -I. Ha, "Droop Control Using Impedance of Grid-Integrated DFIG within Microgrid," IEEE Transactions on Energy Conversion, vol. 34, no. 1, pp. 88-97, March 2019.
[29]I. Oraa, J. Samanes, J. Lopez and E. Gubia, "Control Strategy for a Droop-Controlled Grid-Connected DFIG Wind Turbine," 2022 IEEE 23rd Workshop on Control and Modeling for Power Electronics (COMPEL), Tel Aviv, Israel, 2022, pp. 1-7.
[30]K. De Brabandere, B. Bolsens, J. Van den Keybus, A. Woyte, J. Driesen and R. Belmans, "A Voltage and Frequency Droop Control Method for Parallel Inverters," IEEE Transactions on Power Electronics, vol. 22, no. 4, pp. 1107-1115, July 2007.
[31]J. M. Guerrero, J. Matas, L. Garcia de Vicuna, M. Castilla and J. Miret, "Decentralized Control for Parallel Operation of Distributed Generation Inverters Using Resistive Output Impedance," IEEE Transactions on Industrial Electronics, vol. 54, no. 2, pp. 994-1004, April 2007.
[32]G. Hou, F. Xing, Y. Yang and J. Zhang, "Virtual negative impedance droop method for parallel inverters in microgrids," 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA), Auckland, New Zealand, 2015, pp. 1009-1013.
[33]C. Jin, Junjun Wang, Koh Leong Hai, Choo Fook Hoong and P. Wang, "Coordination secondary control for autonomous hybrid AC/DC microgrids with global power sharing operation," IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 2016, pp. 4066-4071.
[34]H. Mahmood and F. Blaabjerg, "Autonomous Power Management of Distributed Energy Storage Systems in Islanded Microgrids," in IEEE Transactions on Sustainable Energy, vol. 13, no. 3, pp. 1507-1522, July 2022.
[35]H. Mahmood and F. Blaabjerg, "Autonomous Power Management of Distributed Energy Storage Systems in Islanded Microgrids," IEEE Transactions on Sustainable Energy, vol. 13, no. 3, pp. 1507-1522, July 2022.
[36]J. M. Guerrero, J. C. Vasquez, J. Matas, M. Castilla and L. Garcia de Vicuna, "Control Strategy for Flexible Microgrid Based on Parallel Line-Interactive UPS Systems," IEEE Transactions on Industrial Electronics, vol. 56, no. 3, pp. 726-736, March 2009.
[37]X. Lu, K. Sun, J. M. Guerrero, J. C. Vasquez and L. Huang, "State-of-Charge Balance Using Adaptive Droop Control for Distributed Energy Storage Systems in DC Microgrid Applications," IEEE Transactions on Industrial Electronics, vol. 61, no. 6, pp. 2804-2815, June 2014.
[38]W. C. Leal, "A control system for battery current sharing in DC microgrids with DC bus voltage restoration," 2017 Brazilian Power Electronics Conference (COBEP), Juiz de Fora, Brazil, 2017, pp. 1-6.
[39]A. Aggarwal, A. S. Siddiqui and S. Mishra, "Proportional Load Sharing in an Autonomous Hybrid Micro-grid Using Interlinking Converter," 2022 IEEE International Conference on Power Electronics, Smart Grid, and Renewable Energy (PESGRE), Trivandrum, India, 2022, pp. 1-5.
[40]Z. Gao, C. Li, Y. Liu, C. Tian, W. Teng and Y. Rao, "Bidirectional Droop Control of AC/ DC Hybrid Microgrid Interlinking Converter," 2019 2nd International Conference on Safety Produce Informatization (IICSPI), Chongqing, China, 2019, pp. 213-217.
[41]Y. Xia, Y. Peng, P. Yang, M. Yu and W. Wei, "Distributed Coordination Control for Multiple Bidirectional Power Converters in a Hybrid AC/DC Microgrid," IEEE Transactions on Power Electronics, vol. 32, no. 6, pp. 4949-4959, June 2017.
[42]P. Yang, Y. Xia, M. Yu, W. Wei and Y. Peng, "A Decentralized Coordination Control Method for Parallel Bidirectional Power Converters in a Hybrid AC–DC Microgrid," IEEE Transactions on Industrial Electronics, vol. 65, no. 8, pp. 6217-6228, Aug. 2018.
指導教授 廖益弘(Yi-Hung Liao) 審核日期 2023-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明