博碩士論文 110521088 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.144.84.200
姓名 莊銘泓(Ming-Hung Chuang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 歪斜車牌辨識應用於Android行動裝置
(Application of warped license plate recognition to Android mobile devices)
相關論文
★ 獨立成份分析法於真實環境中聲音訊號分離之探討★ 口腔核磁共振影像的分割與三維灰階值內插
★ 數位式氣喘尖峰氣流量監測系統設計★ 結合人工電子耳與助聽器對中文語音辨識率的影響
★ 人工電子耳進階結合編碼策略的中文語音辨識成效模擬--結合助聽器之分析★ 中文發聲之神經關聯性的腦功能磁振造影研究
★ 利用有限元素法建構3維的舌頭力學模型★ 以磁振造影為基礎的立體舌頭圖譜之建構
★ 腎小管之草酸鈣濃度變化與草酸鈣結石關係之模擬研究★ 口腔磁振影像舌頭構造之自動分割
★ 微波輸出窗電性匹配之研究★ 以軟體為基準的助聽器模擬平台之發展-噪音消除
★ 以軟體為基準的助聽器模擬平台之發展-回饋音消除★ 模擬人工電子耳頻道數、刺激速率與雙耳聽對噪音環境下中文語音辨識率之影響
★ 用類神經網路研究中文語音聲調產生之神經關聯性★ 教學用電腦模擬生理系統之建構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-9-1以後開放)
摘要(中) 由於科技進步,人類對於交通工具的需求已是不可或缺,對於台灣來說,車輛的數量更幾乎等同於台灣的總人口數,再加上台灣地小人多的關係,如何有效率的進行車輛停放管理更加重要,而車牌辨識系統的優劣即是處理這個問題的關鍵。目前停車場出入口多半為定位式車牌辨識系統,而路邊停車收費則必須使用移動式車牌辨識系統,移動式車牌系統需要在更多種環境下進行辨識,特別是歪斜的狀況是最常發生的,相較於定位式牌辨識系統更具挑戰性。受惠於近年來深度學習的發展,提高影像處理技術上限,同時快速地進行多張歪斜車牌的辨識已是輕而易舉,因此本研究的目標是將深度學習應用到車牌辨識系統,並將其架設到停車收費管理員的行動裝置上且達到辨識歪斜角度在0-45度的車牌有99%的準確率與單張圖像0.5秒以下的辨識速度,為此,本研究使用歪斜車牌辨識模型IWPODNet與字元辨識模型YOLOv5 並先在電腦端分別以1490張車牌資料集與5560張字元資料集將兩個模型作訓練,其中IWPODNet和YOLOv5的模型解析度選用480X368與160X160,並在308張測試資料IWPODNet得到0.8的Recall,YOLOv5得到了Precision為0.982、Recall為0.973以及F-Score為0.976的良好成果。而辨識速度則分別為單張圖像0.798秒及0.045秒,在APP階段,以模型解析度大小分析準確度與速度的權衡後,最後決定兩個模型分別以288X216與160X160的模型解析度轉換成Tensorflow-Lite模型以便在行動裝置上操作,再架設到合作公司提供的RS35 Android行動電腦上,並建立車牌辨識App,並且使用正則表達式作為字元結果呈現的篩選,最後使用App進行實際拍攝304張200萬畫素的照片,拍攝狀況是以停車收費員視角進行拍攝,並針對距離3公尺內1台汽車或1到3台機車為目標。最後得到90.7%的Precision以及單張圖像最快0.7秒的辨識速度。從此結果也看出IWPODNet較適合在電腦端模擬且利於發揮其轉正的優勢,而YOLOv5不論在的電腦端及APP端都有快速且優良的辨識能力。
摘要(英) With the advancement of technology, the demand for transportation has become indispensable for humans. In the case of Taiwan, the number of vehicles is almost equivalent to the total population, considering the small size of the country and the high population density. Therefore, efficient vehicle parking management is crucial. The performance of license plate recognition systems plays a key role in addressing this issue. Currently, most parking lot entrances and exits use fixed-position license plate recognition systems, while mobile license plate recognition systems are required for roadside parking fee collection. Mobile systems need to perform recognition in a wider range of environments, particularly skewed angles, making them more challenging compared to fixed-position systems. Thanks to the development of deep learning in recent years, improving the upper limit of image processing technology and quickly recognizing multiple license plates has become effortless. Therefore, the goal of this study is to apply deep learning to license plate recognition systems and deploy them on the mobile devices of parking fee administrators, achieving a recognition accuracy of 99% for license plates with skew angles ranging from 0 to 45 degrees and a recognition speed of less than 0.5 seconds per image. To accomplish this, the study utilizes the slanted license plate recognition model IWPODNet and the character recognition model YOLOv5. Both models are trained using separate datasets consisting of 1490 license plate images and 5560 character images on a computer. The resolutions selected for IWPODNet and YOLOv5 models are 480x368 and 160x160. On the 308 test datas, IWPODNet achieved good results with recall of 0.8 and YOLOv5 achieved good results with precision of 0.982, and recall of 0.973. The recognition speeds are 0.798 seconds and 0.045 seconds per image, respectively. In the app phase, after analyzing the trade-off between accuracy and speed based on model resolution size, the two models are finally converted into TensorFlow Lite models with resolutions of 288x216 and 160x160, respectively, for operation on mobile devices.We create a license plate recognition app and use regular expressions as filters for presenting character results. Our models are deployed on the RS35 Android mobile computer provided by the collaborating company to develop a license plate recognition app. Finally, the app is tested by capturing 304 photos with a resolution of 2 million pixels, from the perspective of a parking fee collector, targeting 1 car or 1 to 3 motorcycles within a distance of 3 meters. The results show a precision of 90.7% and the fastest recognition speed of 0.7 seconds per image. From these results, it can be observed that IWPODNet is more suitable for simulation on a computer and benefits from its advantage in handling slanted license plates. On the other hand, YOLOv5 demonstrates fast and excellent recognition capabilities both on the computer and in the app.
關鍵字(中) ★ 車牌辨識
★ 深度學習
關鍵字(英) ★ Android
論文目次 目錄
摘要 I
Abstract III
目錄 V
圖目錄 IX
表目錄 XIII
第一章 緒論 1
1.1研究動機 1
1.2 基本車牌介紹 2
1.3 文獻探討 3
1.3.1傳統影像處理相關車牌辨識方法 3
1.3.2深度學習相關車牌辨識方法 6
1.4 研究目的 11
1.5 論文架構 12
第二章 演算法之架構介紹 13
2.1類神經網路 (Neural Network, NN) 13
2.1.1 類神經網路 13
2.1.2 激活函數 (Activation Function) 14
2.1.3 損失函數 (Loss Function) 17
2.1.4 批次正規化 (Batch Normalization) 19
2.2深度學習 (Deep Learning, DL) 20
2.2.1 卷積神經網路 (Convolutional Neural Networks, CNN) 20
2.3 IWPODNet網路 23
2.3.1 神經網路架構介紹 23
2.3.2 仿射變換 (Affine Transform) 25
2.3.3 Loss Function 28
2.3.4 Non-Maximum Supression 29
2.4 YOLOv5網路 31
2.4.1 神經網路介紹 32
2.4.2 Loss Function與NMS 38
第三章 演算法模擬與實行 41
3.1軟硬體規格及車牌資料的準備 41
3.1.1 軟硬體規格 41
3.1.2 數據準備介紹 42
3.1.3 擴增資料集 43
3.1.4 資料標記 45
3.2 IWPODNet模擬 46
3.2.1 網路參數設置 46
3.2.2 網路訓練及驗證結果 48
3.2.3 Grad-CAM結果 53
3.3 YOLOv5模擬 54
3.3.1 網路參數設置 54
3.3.2 網路訓練及驗證結果 55
3.4 模型轉TensorFlow-Lite與速度優化 58
3.4.1 TensorFlow-Lite與 TensorFlow Interpreter 59
3.4.2 模型量化(Quantization) 60
3.4.3 CPU多線程-異步操作 61
3.4.4 模型輸入大小 62
第四章 研究結果與討論 64
4.1 電腦(PC)端之辨識結果與評估 64
4.1.1 IWPODNet之車牌定位結果 64
4.1.2 YOLOv5字元辨識結果 68
4.1.3 轉正對YOLOv5字元辨識之影響 70
4.2 Android裝置之APP介紹及辨識結果 72
4.2.1 RS35硬體及軟體配置 72
4.2.2 APP架構之軟體配置 72
4.2.3 APP車牌辨識的最終結果 73
4.2.4車牌辨識APP之相機辨識速度評估分析 77
第五章 結果與未來展望 87
5.1結論 87
5.2 未來展望 89
參考文獻 90
參考文獻 Abhishek Kashyap,B.Suresh, Anukul Patil,Saksham Sharma,Ankit Jaiswal.(2018).“Automatic Number Plate Recognition,”2018 IEEE International Conference on Advances in Computing, Communication Control and Networking (ICACCCN)’Oct 12-13,Greater Noida, India,838-843.

Alexey Bochkovskiy,Hong-Yuan Mark Liao,Chien-Yao Wang.(2020).
“YOLOv4: Optimal Speed and Accuracy of Object Detection,”
arXiv:2004.10934

Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton,(2012).“ImageNet Classification with Deep Convolutional Neural Networks,” Communications of the ACM, 84-90.

Gee Sern Hsu,Jiun Chang Chen,Yu Zu Chung.(2013).“Application-Oriented License Plate Recognition,”2013 IEEE Transactions on Vehicular Technology,552 – 561.

Jing Ming Guo,Yun Fu Liu.(2008).“License Plate Localization and Character Segmentation With Feedback Self-Learning and Hybrid Binarization Techniques,”2008 IEEE Transactions on Vehicular Technology,1417 – 1424.

Joseph Redmon, Ali Farhadi.(2018). YOLOv3: “An Incremental Improvement,” arXiv:1804.02767v1

MaxJaderberg,KarenSimonyan,AndrewZisserman,Koray Kavukcuoglu.(2016). “Spatial Transformer Networks,”arXiv:1506.02025.

Ming Xiang He,Peng Hao.(2020). “Robust Automatic Recognition of Chinese License Plates in Natural Scenes,” 2020 IEEE Access,173804 – 173814.

Navaneeth Bodla,Bharat Singh,Rama Chellappa Larry S.Davis.(2017). “Improving Object Detection With One Line of Code,”2017 IEEE International Conference on Computer Vision (ICCV), Oct.22-29 2017.Venice,Italy,5562-5570.

Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, Dhruv Batra, (2019). “Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization,” International Journal of Computer Vision, 1-24.

Rayson Laroca,Luiz.A.Zanlorensi,Gabriel R,Gonçalves,Eduardo Todt,William Robson Schwartz,David Menotti.(2021). “An efficient and layout-independent automatic license plate recognition system based on the YOLO detector,”2021 IET(The Institution of Engineering and Technology)Intelligent Transport Systems,483-503.

Ross Girshick,Jeff Donahue,Trevor Darrell,Jitendra Malik.(2014).“Rich feature hierarchies for accurate object detection and semantic segmentation Tech report ,” 2014 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),Jun.23-28,Columbus,Ohio,USA,580-587.

Sergio Montazzolli Silva , Cláudio Rosito Jung. (2018). “License Plate Detection and Recognition in Unconstrained Scenarios,”2018 Proceedings of the European Conference on Computer Vision (ECCV), Sep.8-14 2018,Munich,Germany,580-596.

Sergio M. Silva,Cláudio Rosito Jung. (2022). “A Flexible Approach for Automatic License Plate Recognition in Unconstrained Scenarios,” 2022 IEEE Transactions on Intelligent Transportation Systems,5693 - 5703.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun, (2015). “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks” Computer Vision and Pattern Recognition, 1-14.

Tejendra Panchala,Hetal Patela,Ami Panchal.(2016).“License Plate Detection using Harris Corner and Character Segmentation by Integrated Approach from an Image,”2016 International Conference on Communication, Computing and Virtualization (ICCCV),419-425.

Yu Cheng, Duo Wang, Pan Zhou, Tao Zhang.(2020).“A Survey of Model Compression and Acceleration for Deep Neural Networks,”2018 IEEE Signal Processing Magazine,126-136.


物件偵測NMS (2018)。2023 年 5 月 17 日 取自
https://chih-sheng-huang821.medium.com/%E6%A9%9F%E5%99%A8-%E6%B7%B1%E5%BA%A6%E5%AD%B8%E7%BF%92-%E7%89%A9%E4%BB%B6%E5%81%B5%E6%B8%AC-non-maximum-suppression-nms-aa70c45adffa

公路總局之車種與車牌類別(2023)。2023年6月25取自https://www.thb.gov.tw/cp.aspx?n=102
指導教授 吳炤民(Chao-Min Wu) 審核日期 2023-8-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明