博碩士論文 110521092 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.145.79.65
姓名 李紫綾(Tzu-Lin Lee)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 低扭矩機械手臂機構開發與脈寬調變進階控制器設計
(Mechanism Development and Pulse-Width Modulation Advanced Controller Design of Low Torque Manipulator)
相關論文
★ 基於適應性徑向基神經網路與非奇異快速終端滑模控制結合線上延遲估測器應用於二軸機械臂運動軌跡精確控制★ 新型三維光學影像量測系統之設計與控制
★ 新型雙紐線軌跡設計與進階控制實現壓電平台快速與精確定位★ 基於深度座標卷積與自動編碼器給予行人實時路徑及終點位置精確預測
★ 修正式雙紐線軌跡結合自適應積分終端滑動模態控制與逆模型遲滯補償實現壓電平台精確追蹤★ 以粒子群最佳化-倒傳遞類神經網路-比例積分微分控制器和影像金字塔轉換融合方法實現三維光學顯微影像系統
★ 以局部熵亂度分布與模板匹配方法結合自適應ORB特徵提取達成多影像精確拼接★ 使用時域門控與梅森增益公式構建四埠夾具的散射參數表徵
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-1以後開放)
摘要(中) 機械手臂因為具有多種優勢,目前已經被廣泛應用。首先,機械手臂能夠自動化重複性、精確度高的任務,提高生產效率和品質控制。其次,機械手臂在危險和有害環境中代替人類操作,提高工作安全性。此外,機械手臂持久的高生產力和品質一致的工作效率,使其適合處理需要大量重複性工作的高精度任務,可應用於不同行業和應用。傳統的機械手臂通常會將馬達安裝在旋轉軸上,導致機械手臂在設計時需要考慮馬達的形狀大小,以及機械手臂在做動時需要多負擔馬達的重量,導致扭矩增加。為了解決此問題,本論文設計了一個二軸的機械手臂,軸一透過齒輪進行驅動,軸二透過皮帶進行驅動,透過將馬達都安裝在底座上,可以有效降低手臂的扭矩。另外,機械手臂的連桿、旋轉軸、馬達座等機械手臂硬體皆自行設計加工,設計巧思上具有方便拆裝維修等優點。最後,機械手臂的跟蹤精度以及穩定性也是需要被解決的問題。我們設計了一個具有自適應律的滑模控制器,來對本論文所設計的機械手臂進行軌跡跟蹤控制,所提出的控制器與PID控制以及滑模控制進行跟蹤精度的比較,來證明此論文所提出的控制器具有較小的跟蹤誤差。此外,為了證明此論文所提出的控制器具有強健性,將所提出的控制器作用在被擾動影響的機械手臂上,在擾動影響下依然具有不錯的跟蹤精度,證明所提出之控制方法可以有效解決皮帶驅動與各種干擾等可能導致的擾動問題。
摘要(英) Robotic arms have been widely used because of their various advantages. First, robotic arms can automate repetitive, high-precision tasks, improving production efficiency and quality control. Secondly, the robotic arm replaces human operation in dangerous and harmful environments, improving working safety. In addition, the robotic arm’s long-lasting high productivity and consistent work efficiency make it suitable for handling high-precision tasks that require a lot of repetitive work, which can be applied to different industries and applications. Traditional robotic arms usually install the motor on the rotating shaft, which leads to the need to consider the shape and size of the motor when designing the robotic arm, and the need to bear the weight of the motor when the robotic arm moves, resulting in increased torque. In order to solve this problem, a dual-axis robotic arm is designed in this thesis. The first axis is driven by a gear, and the second axis is driven by a belt. By installing the motors on the base, the torque of the arm can be effectively reduced. In addition, the hardware of the robotic arm, such as the connecting rod, rotating shaft, and motor base, are all designed and processed by ourselves, which has the advantages of easy disassembly and maintenance. Finally, the tracking accuracy and stability of the robotic arm are also issues that need to be resolved. In this thesis, an advanced controller named adaptive sliding mode controller (ASMC) is designed to perform trajectory tracking control on the self-developed robotic arm, and the tracking accuracy is compared with PID control and ordinary sliding mode control (SMC) to prove the control proposed in this thesis device has a small tracking error. In addition, in order to show that the proposed controller is robust, we used it on the external disturbance that affected the robotic arm and proved its use has small tracking accuracy under the condition of external disturbance. Moreover, it also can effectively solve the perturbation problem from the belt drive and other possible disturbances.
關鍵字(中) ★ 機械手臂
★ 皮帶驅動
★ 自適應滑模控制
★ 追蹤誤差
★ 擾動問題
關鍵字(英) ★ robotic arm
★ belt-drive
★ adaptive sliding mode control
★ tracking error
★ perturbation problem
論文目次 摘要 i
ABSTRACT ii
Table of Content v
List of Figures vii
List of Tables ix
Explanation of Symbols x
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature Survey 3
1.2.1 Mechanism Design of Manipulator 3
1.2.2 Control Methods of Manipulator Trajectory 7
1.3 Contribution 11
1.4 Thesis Organization 13
Chapter 2 Preliminaries 14
2.1 Characterizing the Motor 14
2.1.1 Encoder Resolution 14
2.1.2 Motor Model 17
2.2 Motor Control 18
2.2.1 H-Bridge Motor Driver 18
2.2.2 Pulse Width Modulation 19
2.3 Sliding Mode Control 20
Chapter 3 Manipulator Hardware Design 23
3.1 Part Specifications 24
3.2 Design of the Link 27
3.3 Design of the shaft 29
3.4 Motor seat and thickened shaft sleeve 29
3.5 Gear drive design 30
3.6 Belt Drive Design 32
Chapter 4 Controller Design 33
4.1 Dynamic Model for Dual-axis Manipulator 33
4.2 Adaptive sliding mode control 35
4.2.1 Control Algorithm 36
4.2.2 Stability Analysis 38
Chapter 5 Experiments 41
5.1 Simulation setup 41
5.2 Simulation results 43
5.3 Experiment setup 49
5.4 Experiment results 51
Chapter 6 Conclusions 58
Reference 59
參考文獻 [1] J. Roy and L. L. Whitcomb, “Comparative structural analysis of 2-dof semi-direct-drive linkages for robot arms,” IEEE/ASME Transactions on Mechatronics, vol. 4, no. 1, pp. 82-86, 1999.
[2] P. Yadmellat, A. S. Shafer, and M. R. Kermani, “Design and development of a single-motor, two-dof, safe manipulator,” IEEE/ASME Transactions on Mechatronics, vol. 19, no. 4, pp. 1384-1391, 2014.
[3] H. S. Kim, J. K. Min, and J. B. Song, “Multiple-degree-of-freedom counterbalance robot arm based on slider-crank mechanism and bevel gear units,” IEEE/ASME Transactions on Robotics, vol. 32, no. 1, pp. 230-235, 2016.
[4] M. A. S. Aziz, S. Yahya, H. A. F. Almurib, Y. A. Abakr, M. Moghavvemi, Z. Madibekov, A. A. Elsayed, and M. O. M. AbdulRazic, “Torque minimized design of a light weight 3 dof planar manipulator,” IEEE Transactions on Industry Applications, vol. 55, no. 3, pp. 3207-3214, 2019.
[5] R. Chaichaowarat, J. Kinugawa, A. Seino, and K. Kosuge, “A Spring-Embedded Planetary-Geared Parallel Elastic Actuator,” Proc. of the 2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Boston, MA, USA, July. 6-9, 2020.
[6] J. Min, D. Kim, and J. Song, “A wall-mounted robot arm equipped with a 4-dof yaw-pitch-yaw-pitch counterbalance mechanism,” IEEE Robotics and Automation Letters, vol. 5, no. 3, pp. 3768-3744, 2020.
[7] Y. Huang, Y. Chen, X. Zhang, H. Zhang, C. Song, and J. Ota, “A Novel Cable-Driven 7-DOF Anthropomorphic Manipulator,” IEEE/ASME Transactions on Mechatronics, vol. 26, no. 4, pp. 2174-2185, 2021.
[8] V. Groenhuis, G. Rolff, K. Bosman, L. Abelmann, and S. Stramigioli, “Multi-Axis Electric Stepper Motor,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 7201-7208, Oct. 2021.
[9] J. Baek, S. Cho, and S. Han, “Practical time-delay control with adaptive gains for trajectory tracking of robot manipulators,” IEEE Transactions on Industrial Electronics, vol. 65, no. 7, pp. 5682-5692, 2018.
[10] Q. Guo, Y. Zhang, B. G. Celler, and S. W. Su, “Neural adaptive backstepping control of a robotic manipulator with prescribed performance constraint,” IEEE Transactions on Neural Networks and Learning System, vol. 30, no. 12, pp. 3572-3583, 2019.
[11] Y. Zhu, J. Qiao, Y. Zhang, and L. Guo, “High-precision trajectory tracking control for space manipulator with neutral uncertainty and deadzone nonlinearity,” IEEE Transactions on Control System Technology, vol. 27, no. 5, pp. 2254-2262, 2019
[12] R. Maiti, K. Das Sharma, and G. Sarkar, “Linear consequence-based fuzzy parallel distributed compensation type L1 adaptive controller for two robot manipulator,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 10, pp. 3978- 3990, 2019.
[13] J. Nubert, J. Köhler, V. Berenz, F. Allgöwer, and S. Trimpe, “Safe and fast tracking on a robot manipulator: robust mpc and neural network control,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 3050-3057, 2020.
[14] B. Xiao, L. Cao, S. Xu, and L. Liu, “Robust Tracking Control of Robot Manipulators With Actuator Faults and Joint Velocity Measurement Uncertainty,” IEEE/ASME Transactions on Mechatronics, vol. 25, no. 3, pp. 1354-1365, June 2020
[15] J. Lee, P. H. Chang, and M. Jin, “An Adaptive Gain Dynamics for Time Delay Control Improves Accuracy and Robustness to Significant Payload Changes for Robots,” IEEE Transactions on Industrial Electronics, vol. 67, no. 4, pp. 3076-3085, April 2020
[16] Y. Lin, Z. Chen, and B. Yao, “Unified motion/force/impedance control for manipulators in unknown contact environments based on robust model-reaching approach,” IEEE/ASME Transactions on Mechatronics, vol. 26, no. 4, pp. 1905-1913, 2021.
[17] N. Morozovsky, R. Moroto, and T. Bewley, “RAPID: An Inexpensive Open Source Dynamometer for Robotics Applications,” IEEE/ASME Transactions on Mechatronics, vol. 18, no. 6, pp. 1855-1860, Dec. 2013.
[18] D. M. Dawson, J. J. Carroll, and M. Schneider, “Integrator backstepping control of a brush DC motor turning a robotic load,” IEEE Transactions on Control Systems Technology, vol. 2, no. 3, pp. 233-244, Sept. 1994.
[19] T. L. M. Bartelt, Industrial Control Electronics: Devices Systems and Applications, 2nd ed. Albany, N.Y: Delmar, 2002.
[20] M. M. Mustafa and I. Hamarash, “Microcontroller-Based Motion Control for DC Motor Driven Robot Link,” International Aegean Conference on Electrical Machines and Power Electronics (ACEMP) & 2019 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), Istanbul, Turkey, 2019.
[21] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters Applications and Design, 3rd ed. New Delhi, India: Wiley India, 2007.
[22] P. Wolm, X. Q. Chen, J. G. Chase, W. Pettigrew, and C. E. Hann, “Analysis of a PM DC Motor Model for Application in Feedback Design for Electric Powered Mobility Vehicles, ” 2008 15th International Conference on Mechatronics and Machine Vision in Practice, Auckland, New Zealand, 2008, pp. 640-645
[23] R. Krishnan and S. Lee, “PM brushless DC motor drive with a new power-converter topology,” IEEE Transactions on Industry Applications, vol. 33, no. 4, pp. 973-982, Aug. 1997.
[24] Y. C. Hsu, S. C. Kao, C. Y. Ho, P. H. Jhou, M. Z. Lu, and C. M. Liaw, “On an Electric Scooter with G2V/V2H/V2G and Energy Harvesting Functions,” IEEE Transactions on Power Electronics, vol. 33, no. 8, pp. 6910-6925, Aug. 2018.
[25] B. Singh, R. Kumar and, P. Kant, “Adjustable Speed Induction Motor Drive Fed by 13-Level Cascaded Inverter and 54-Pulse Converter,” IEEE Transactions on Industry Applications, vol. 58, no. 1, pp. 890-900, Feb. 2022.
[26] P. F. Muir and C. P. Neuman, “Pulsewidth Modulation Control of Brushless DC Motors for Robotic Applications, ” IEEE Transactions on Industrial Electronics, vol. IE-32, no. 3, pp. 222-229, Aug. 1985
[27] S. Ghosh, M. Ghosh, G. K. Panda, and P. K. Saha, “Mechanical Contact-Less Computational Speed Sensing Approach of PWM Operated PMDC Brushed Motor: A Slotting-Effect and Commutation Phenomenon Incorporated Semi-Analytical Dynamic Model-Based Approach,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 1, pp. 81-85, Jan. 2018.
[28] J. W. Wu, M. Y. Chen, S. K. Hung and L. C. Fu, “A compact tapping mode AFM with sliding mode controller for precision image scanning, ” 2011 8th Asian Control Conference (ASCC), Kaohsiung, Taiwan, 2011
[29]Y. Feng, M. Zhou, Q. L. Han, F. Han, Z. Cao, and S. Ding, “Integral-Type Sliding-Mode Control for a Class of Mechatronic Systems with Gain Adaptation,” IEEE Transactions on Industrial Informatics, vol. 16, no. 8, pp. 5357-5368, Aug. 2020.
[30] S. Mobayen, O. Mofid, S. U. Din, and A. Bartoszewicz, “Finite-Time Tracking Controller Design of Perturbed Robotic Manipulator Based on Adaptive Second-Order Sliding Mode Control Method,” IEEE Access, vol. 9, pp. 71159-71169, 2021.
[31] S. K. Kommuri, S. Han, and S. Lee, “External Torque Estimation Using Higher Order Sliding-Mode Observer for Robot Manipulators,” IEEE/ASME Transactions on Mechatronics, vol. 27, no. 1, pp. 513-523, Feb. 2022.
[32] T. J. Kang, C. Yang, Y. Park, D. Hyun, S. B. Lee, and M. Teska, “Electrical Monitoring of Mechanical Defects in Induction Motor-Driven V-Belt–Pulley Speed Reduction Couplings,” IEEE Transactions on Industry Applications, vol. 54, no. 3, pp. 2255-2264, 2018.
[33] J. Angeles, Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms, 3rd ed. Berlin, Germany: Springer, 2007.
[34] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Dynamics and Control, 2nd ed. Hoboken, NJ, USA: Wiley, 2004.
[35] J. J. Craig, Introduction to Robotics Mechanics and Control, 3nd ed, Pearson Prentice Hall, Upper Saddle River, 2005
指導教授 吳俊緯(Jim-Wei Wu) 審核日期 2023-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明