博碩士論文 110521093 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.14.133.162
姓名 謝育祥(Yu-Xiang Hsieh)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於數據驅動之冰機效率及運轉參數建模與設備故障偵測
相關論文
★ 直接甲醇燃料電池混合供電系統之控制研究★ 利用折射率檢測法在水耕植物之水質檢測研究
★ DSP主控之模型車自動導控系統★ 旋轉式倒單擺動作控制之再設計
★ 高速公路上下匝道燈號之模糊控制決策★ 模糊集合之模糊度探討
★ 雙質量彈簧連結系統運動控制性能之再改良★ 桌上曲棍球之影像視覺系統
★ 桌上曲棍球之機器人攻防控制★ 模型直昇機姿態控制
★ 模糊控制系統的穩定性分析及設計★ 門禁監控即時辨識系統
★ 桌上曲棍球:人與機械手對打★ 麻將牌辨識系統
★ 相關誤差神經網路之應用於輻射量測植被和土壤含水量★ 三節式機器人之站立控制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文以冰水主機設備(冰機)節能維護為研究主軸,冰機在暖通空調系統中是非常耗電的設備,此種大型設備的效率提升與參數優化,往往需藉專業人員的經驗以及知識才能達成。本研究嘗試藉由冰機的運轉數據資料來分析與調整適合的冰機特徵參數,若無法調整則找出冰機設備故障因素,期許本研究對於冰機設備的維護貢獻一份心力。
本研究以訓練資料訓練非線性迴歸模型(Non-linear regression model),模型的參數是感測器收集到的參數資料。在模型設計上不直接結合冰機的物理性質做開發,發展數據驅動(Data driven)模式的研究。由於並不是所有參數都是可控的,可控參數被設定為其中四個,而系統在冰機效率低落診斷上給出的建議調整參數不限於可控參數,會包含到其他非可控參數,因此本研究針對此問題做進一步探討。在系統給出建議調整參數為非可控參數時,則透過訓練資料搭配最小平方法(Least square algorithm)來建立出建議參數(不可控)與可控參數的非線性迴歸模型,藉由此可控參數與建議調整參數(不可控)之關係模型,再依據該建議參數(不可控)調整數值為目標執行基因演算法(Genetic algorithm)找出四個可控參數的調整量;其中需先將訓練資料中各參數做最大-最小正規化(Min-Max normalization)再進行模型訓練,提高模型準確度。
本研究也針對設備的運行狀態進行監測,用以及早發現不正常運作及設備異常的狀況發生,利用專家規則(Expert rules)的判斷來解決此項問題;以t-檢定(t-test)來計算各參數之非可靠度,並將規則內的參數之非可靠度帶入專家故障規則中,分別計算每一條規則的可靠度,當該規則可靠度低於百分之50時,則會給出設備需保養或維運的標的,由此判斷屬於何種設備故障。本研究開發了使用者介面,以利使用者設定相關分析參數及資料庫的連接,將冰機效率分擬合結果、水塔效率曲線、故障可靠度及指定參數當前的狀態視覺化,並顯示分析之可控參數調整的值及故障分析需改善的設備。
摘要(英) This paper focuses on the energy-saving maintenance of the chiller unit in the HVAC system. The chiller machine is a very power-consuming device. The efficiency improvement and parameter optimization of such large-scale equipment often require the experience and knowledge of professionals to achieve. This study attempts to analyze and adjust the uncontrollable characteristic parameters of the chiller machine based on the operating data of the chiller machine, and find out the failure factors of the chiller machine if it cannot be adjusted. It is hoped that this study will contribute to the maintenance of chiller machine equipment.
This study trains a nonlinear regression model using training data, with the variables being parameter data collected by sensors. In terms of model design, instead of directly combining the physical properties of the chiller, the study uses a black-box method to develop a data-driven research mode. As not all parameters are controllable, four are set as controllable parameters. The recommendations for adjusting parameters given by the system during analysis and diagnosis are not limited to controllable parameters and may include other non-controllable parameters. Therefore, this study further investigates this issue. When the system suggests adjusting uncontrollable parameters, a non-linear regression model for suggested and controllable parameters is established based on training data and the least square algorithm to create a non-linear relationship between controllable and suggested parameters. Genetic Algorithm is then used to find the adjustments for four controllable parameters according to the suggested parameter. Before model training, the training data is normalized to improve the accuracy of the model by min-max normalization.
This study also monitors equipment operating status to detect abnormal operations or equipment malfunction as early as possible, and expert rules are established to address this issue. Fault rules are defined based on past experiences, and t-tests are used to detect whether each specified parameter is abnormal. The selected parameters are then incorporated into the expert fault rules, and the reliability of each rule is calculated. If the reliability of a rule is lower than fifty percent, the target equipment is identified as needing maintenance or repair, and the type of equipment malfunction is determined. This study developed a user interface for users to set relevant analysis parameters and connect to the database. The analysis results are visualized, including the efficiency analysis of the chiller, the efficiency curve of the cooling tower, the fault reliability, and the current status of the specified parameters. The suggested values for controllable parameter adjustments and the equipment that needs improvement for fault analysis are also displayed.
關鍵字(中) ★ 非線性迴歸模型
★ 故障分析
★ 數據驅動
★ 專家規則
關鍵字(英) ★ non-linear regression model
★ fault analysis
★ data-driven
★ expert rule
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 vii
表目錄 ix
第一章 緒論 1
1.1研究背景與動機 1
1.2文獻回顧 1
1.3研究目標 4
1.4論文架構 4
第二章 系統架構與軟硬體介紹 6
2.1冰水主機系統架構介紹 6
2.2系統硬體介紹 8
2.3系統軟體介紹 9
第三章 冰機可控參數之值 13
3.1數據驅動 13
3.2迴歸模型之建立 13
3.2.1移除離群值 14
3.2.2數據最大-最小正規化 14
3.2.3非線性迴歸模型 16
3.2.4最小平方法 17
3.2.5冰機效率預測模型建立 19
3.3建立不可控與可控參數之關係 21
3.3.1參數模型建立 21
3.3.2基因演算法與可控參數的尋找 22
第四章 冰機系統故障判別 26
4.1成對樣本t-檢定 26
4.2設備參數監測 28
4.3冷卻水塔效率分析 29
4.4專家故障規則 31
4.5本章節重點總結 34
第五章 系統功能介紹 36
5.1系統流程與架構 36
5.2使用者參數及系統執行設定 37
5.3使用者介面介紹 39
第六章 實驗結果 42
6.1資料參數正規化 42
6.2回歸模型冰機效率預測 43
6.3不可控參數調整結果 45
6.4指定參數監測結果 50
6.5故障規則可靠度計算 52
6.6使用者介面呈現結果 54
第七章 結論與未來展望 58
7.1結論 58
7.2未來展望 58
參考文獻 60
參考文獻 [1] 台灣電力股份有限公司,「歷年發購電量占比」,參考於2023年01月18日,Available: https://pse.is/4qm7lb .
[2] 財團法人台灣綠色生產力基金會,「辦公大樓節能技術手冊」,發佈於110年12月,參考於2023年01月18日.
[3] 經濟部能源局,「能源用戶應申報使用能源之種類、數量、項目、效率、申報期間及方式(經能字第11120080180號)」,發布於2023年1月4日,參考於2023年7月18日.
[4] S. Ardabili, B. Beszedes, L. Nadai, K. Szell, A. Mosavi and F. Imre, "Comparative analysis of single and hybrid neuro-fuzzy-based models for an industrial heating ventilation and air conditioning control system," in RIVF International Conference on Computing and Communication Technologies, Ho Chi Minh City, Vietnam, Jul. 2020, pp. 1-6.
[5] S. Li and Z. Jiang, "Prediction of COP value of air-conditioning chillers based on improved FOA-GRNN," in Chinese Control And Decision Conference, Nanchang, China, Sep. 2019, pp. 1343-1347.
[6] H. J. Yoon and J. H. Jang, "Ongoing energy fault detection using a data-driven chiller performance prediction model," in 7th International Conference on Computing and Convergence Technology, Seoul, Korea (South), Dec. 2012, pp. 866-869.
[7] L. Yao and K. Jaiteh, "Multi-objective control of central air conditioning system," in IEEE International Conference on Environment and Electrical Engineering and IEEE Industrial and Commercial Power Systems Europe, Milan, Italy, Jun. 2017, pp. 1-6.
[8] J. W. Yan, Z. Yu and X. Zhou, "Study on operation energy efficiency model of chiller based on SVR," in 26th Chinese Control and Decision Conference, Changsha, China, Jul. 2014, pp. 4282-4286.
[9] D. Lixing, L. Jinhu, L. Xuemei and L. Lanlan, "Support vector regression and ant colony optimization for HVAC cooling load prediction," in International Symposium on Computer, Communication, Control and Automation, Tainan, Taiwan, May 2010, pp. 537-541.
[10] A. Haque, M. Pipattanasomporn, S. Rahman, S. R. Kothandaraman, A. Malekpour, E. A. Paaso and S. Bahramirad, "An SVR-based building-level load forecasting method considering impact of HVAC set points," in IEEE Power & Energy Society Innovative Smart Grid Technologies Conference, Washington, DC, USA, Feb. 2019, pp. 1-5.
[11] W. Pu, Z. Wenhao and G. Xuejin, "Research on the model of chiller efficiency prediction based on error correction," in Chinese Control Conference, Guangzhou, China, Jul. 2019, pp. 1660-1665.
[12] Z. Xiaoming, A. Sato, Y. Kudo, J. Okitsu, T. Nakamura and M. A. Abd Majid, "Energy efficient operation based on root cause analysis for multiple-chiller plant," in IEEE International Conference on Control System, Computing and Engineering , George Town, Nov. 2015, pp. 441-447.
[13] Y. Zhang, R. Li, F. Wang, A. Li, D. Huang and G. Chen, "Rule-based optimal control for the cooling water subsystem of chiller plants," in IECON 43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, Oct. 2017, pp. 8138-8143.
[14] A. Berouine, E. Akssas, Y. Naitmalek, F. Lachhab, M. Bakhouya, R. Ouladsine and M. Essaaidi, "A fuzzy logic-based approach for HVAC systems control," in 6th International Conference on Control, Decision and Information Technologies, Paris, France, Apr. 2019, pp. 1510-1515.
[15] S. Faddel, G. Tian, Q. Zhou and H. Aburub, "Data driven Q-learning for commercial HVAC control," in SoutheastCon, Raleigh, NC, USA, Mar. 2020, pp. 1-6.
[16] K. Mason and S. Grijalva, "Building HVAC control via neural networks and natural evolution strategies," in IEEE Congress on Evolutionary Computation, Kraków, Poland, Jun. 2021, pp. 2483-2490.
[17] Z. Liao, Q. Wei and R. Song, "Parallel adaptive critic designs of optimal control for ice-storage air conditioning systems," in IEEE Symposium Series on Computational Intelligence, Xiamen, China, Dec. 2019, pp. 37-42.
[18] O. Y. Maryasin, "Optimal control of energy consumption in an office building based on a hierarchical digital model," in 3rd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency, Lipetsk, Russian Federation, Nov. 2021, pp. 853-858.
[19] A. S. Kolodkhina, O. Y. Maryasin and A. A. Ogarkov, "Optimal control for building energy and comfort management of large multi-zone buildings", Control of large systems, vol. 75, no. 7, pp. 146-169, Sep. 2018.
[20] A. E. Ruano, S. Silva, S. Pesteh, P. M. Ferreira, H. Duarte, G. Mestre, H. Khosravani and R. Horta, "Improving a neural networks based HVAC predictive control approach," in IEEE 9th International Symposium on Intelligent Signal Processing Proceedings, Siena, Italy, May 2015, pp. 1-6.
[21] Y. Zhou, S. H. Du, Y. Gao, F. Xiao, G. Kai and J. P. Li, "Study on efficiency optimization strategy of central air-conditioning system," in 18th International Computer Conference on Wavelet Active Media Technology and Information Processing, Chengdu, China, Dec. 2021, pp. 272-278.
[22] R. Radhakrishnan, D. Nikovski, K. Peker and A. Divakaran, "A comparison between polynomial and locally weighted regression for fault detection and diagnosis of HVAC equipment," in IECON 32nd Annual Conference on IEEE Industrial Electronics, Paris, France, Nov. 2006, pp. 3668-3673.
[23] K. Padmanabh, A. Al-Rubaie and A. A. A. A. Aljasmi, "Health estimation and fault prediction of the sensors of a HVAC system," in IEEE International Conference on Internet of Things and Intelligence Systems, BALI, Indonesia, Nov. 2022, pp. 87-92.
[24] N. A. Sulaiman, M. F. Othman and H. Abdullah, "Fuzzy logic control and fault detection in centralized chilled water system," in IEEE Symposium Series on Computational Intelligence, Cape Town, South Africa, Dec. 2015, pp. 8-13.
[25] L. Chang, H. Wang and L. Wang, "Fault detection and diagnosis of an HVAC system using artificial immune recognition system," in IEEE PES Asia-Pacific Power and Energy Engineering Conference, Hong Kong, China, Dec. 2013, pp. 1-5.
[26] A. Watkins and J. Timmis, "Exploiting parallelism inherent in AIRS, an artificial immune classifier," in International Conference on Artificial Immune Systems, Catania, Sicily, Italy, Sep. 2004, pp. 427-438.
[27] B. Littooy, S. Loire, M. Georgescu and I. Mezić, "Pattern recognition and classification of HVAC rule-based faults in commercial buildings," in IEEE International Conference on Big Data, Washington, DC, USA, Dec. 2016, pp. 1412-1421.
[28] C. Yang, B. Gunay, Z. Shi and W. Shen, "Machine learning-based prognostics for central heating and cooling plant equipment health monitoring," IEEE Transactions on Automation Science and Engineering, vol. 18, no. 1, pp. 346-355, Jan. 2021.
[29] X. Wang and K. Yan, "Fault detection and diagnosis of HVAC system based on federated learning," in IEEE Intl. Conf. on Dependable, Autonomic and Secure Computing, Intl. Conf. on Pervasive Intelligence and Computing, Intl. Conf. on Cloud and Big Data Computing, Intl. Conf. on Cyber Science and Technology Congress, Falerna, Italy, Sep. 2022, pp. 1-8.
[30] K. I-K. Wang, X. Zhou, W. Liang, Z. Yan and J. She, "Federated transfer learning based cross-domain prediction for smart manufacturing," IEEE Transactions on Industrial Informatics, vol. 18, no. 6, pp. 4088-4096, Jun. 2022.
[31] Z. Xiaoming, A. Sato, Y. Kudo, J. Okitsu, H. Aoki, T. Nakamura and M. A. Abd Majid, "A case study of electric chiller performance bottleneck diagnosis by root cause analysis," in 1st International Conference on Information Technology, Information Systems and Electrical Engineering, Yogyakarta, Indonesia, Aug. 2016, pp. 174-179.
[32] Y. Chen and J. Wen, "A whole building fault detection using weather based pattern matching and feature based PCA method," in IEEE International Conference on Big Data, Boston, MA, USA, Dec. 2017, pp. 4050-4057.
[33] B. Sun, P. B. Luh, Q. S. Jia, Z. O’Neill and F. Song, "Building energy doctors: an SPC and kalman filter-based method for system-level fault detection in HVAC systems," IEEE Transactions on Automation Science and Engineering, vol. 11, no. 1, pp. 215-229, Jan. 2014.
[34] Y. E. Shao, "A fault detection for a correlated process with the use of SPC/EPC/NN scheme," in Fourth International Conference on Innovative Computing, Information and Control, Kaohsiung, Taiwan, Dec. 2009, pp. 240-243.
[35] 陳易,「基於機器學習之冰機設備運轉參數優化系統」,Master’s thesis,國立中央大學,桃園市,2021. (王文俊指導)
[36] 經濟部能源局,「修正『空調系統冰水主機能源效率標準』,名稱並修正為『蒸氣壓縮式冰水機組容許耗用能源基準與能源效率分級標示事項方法及檢查方式』(經能字第10804603470號)」,行政院公報第25卷第156期,發布於2019年8月20日,參考於2023年7月18日.
[37] P. Barrett, J. Hunter, J. T. Miller, J. C. Hsu and P. Greenfield, "Matplotlib - a portable python plotting package," Astronomical Data Analysis Software and Systems XIV, vol. 347, no. 16, pp. 91-95, Dec. 2005.
[38] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. Fernández del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke and T. E. Oliphant, "Array programming with numpy," Nature, vol. 585, no. 7825, pp. 357-362, Sep. 2020.
[39] Q. Li, X. Deng and H. Wu, "An improved pagination widget based on pyqt5," in 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference, Chongqing, China, Jun. 2022, pp. 990-996.
[40] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot and É. Duchesnay, "Scikit-learn: machine learning in python," Journal of Machine Learning Research, vol. 12, no. 85, pp. 2825-2830, Oct. 2011.
[41] A. Bhattacharjee, S. Saranya and P. Kuntumalla, "Estimation of driver demand torque using parametric and nonparametric data-driven model," in IEEE Second International Conference on Control, Measurement and Instrumentation, Kolkata, India, Jan. 2021, pp. 87-92.
[42] 蔡聰明, “最小平方法與回歸分析,” 中央研究院數學研究所-數學傳播, vol. 41, no. 3, pp. 26-38, Sep. 2017.
[43] E. Ostertagová, "Modeling using polynomial regression," Procedia Engineering, vol. 48, no. 69, pp. 500-506, Nov. 2012.
[44] S. N. Sivanandam and S. N. Deepa, "Introduction to genetic algorithms," Springer, pp. 15-37, Jan 2008.
[45] S. N, S. V and I. V, "Multi-Linear regression technique for predicting the liver disease," in Innovations in Power and Advanced Computing Technologies, Kuala Lumpur, Malaysia, Nov. 2021, pp. 1-7.
[46] M. Mahbobi and T. K. Tiemann, "Introductory business statistics with interactive spreadsheets - 1st Canadian edition," BC Open Textbook Collection, ed. 1.03, pp. 31-53, Jul. 2022.
[47] 工業技術研究院之綠能與環境研究所,「能源查核與節約能源案例手冊-空調系統」,發布於2006年9月21日,參考於2023年2月21日.
[48] 經濟部標準檢驗局,「可靠度(Reliability)概論」,發布於2022年5月27日,參考於2023年2月23日.
指導教授 王文俊(Wen-June Wang) 審核日期 2023-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明