博碩士論文 110521100 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:65 、訪客IP:18.188.51.137
姓名 謝秉融(Bing-Rong Xie)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於無電流感測三相Vienna整流器之新型電壓判斷成分注入法於平衡及不平衡直流鏈電壓之應用
(A Current Sensorless Three-phase Vienna Rectifier Based on Novel Voltage Judgement Component Injection Scheme under Balanced and Unbalanced DC-link Voltage Application)
相關論文
★ 微電網逆變器之智慧型控制策略★ 高頻高電流之雙向直流-直流轉換器設計
★ 應用於三相轉換器之被動元件在線監測與無電流感測三相整流器之系統控制★ 結合零序回授補償與無通訊之載波同步於並聯雙向交直流轉換器之環流抑制
★ 三相Vienna整流器無電壓感測線性非時變直接功率控制★ 具柔切三相六開關反流器之併網及新型垂降控制策略
★ 基於虛擬阻抗孤島交流微電網功率分配及其電壓與頻率恢復控制策略之發展★ 應用於具儲能混合交直流微電網之雙向互連轉換器電壓控制策略
★ 具柔切三相分源逆變器與直交流電壓控制策略研製★ 考慮不平衡電源之三相整流器線性化直接 功率控制之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 與傳統三階層中性點箝位(Neutral Point Clamped, NPC)及T型雙向AC/DC轉換器相比,Vienna整流器具有成本低、效率高及較低的電壓應力。在單向功率傳輸的應用中,Vienna整流器的直流鏈電壓可當作雙輸出獨立型的電壓源,以滿足直流鏈匯流排雙負載的不同輸出電壓需求,亦或是雙負載依據不同充電速率應用所造成之變化,以上兩者皆造成輸出電容端電壓產生不平衡之情形,於實際應用中需特別進行考量。
本文提出一種基於無電流感測器前饋控制之新型電壓判斷成分注入法於三相Vienna整流器,包含三種不同功能進行結合:
1. 電壓成分判斷注入法(Voltage Judgement Component Injection Scheme, VJCIS),在僅電壓訊號下即可進行零序的計算,並且考量輸出電容端電壓平衡及不平衡情形,仍能維持輸入電流無zero crossing distortion,且透過將中性點電壓(Neutral Point Voltage)擾動進行抑制,改善輸出端直流性能。
2. 為了減少電路體積及成本,分析Vienna整流器拓樸並以無電流感測控制架構進行實現,將主架構與所提零序注入法進行結合,減少電路體積及成本。
3. 考量無電流感測架構因單電壓迴路PI控制器的限制,造成輸出電壓暫態及性能受到影響,本論文提出前饋控制(Feedforward Control)架構,透過提前預測Vienna電路於穩態之情形,進行誤差追蹤補償,以改善電壓過衝量(Overshoot)及補償功率半導體元件導通之壓降。
最終透過所提方法經由模擬結果進行分析,與實作建置一台2.4 kW Vienna轉換器比較結果一致,驗證所提方法的有效和正確性。
摘要(英) Compared to traditional three-level neutral point clamped (NPC) and T-type bidirectional AC/DC converters, the Vienna rectifier offers lower cost, higher efficiency, and lower voltage stress. In applications with unidirectional power transfer, the DC-link voltage of the Vienna rec-tifier can be used as a dual-output independent voltage source to meet the different output volt-age requirements of the DC-link bus with dual loads. It can also accommodate variations caused by different charging rates of dual loads. Both scenarios result in unbalanced output capacitor voltages, which need to be carefully considered in practical applications.
This paper proposes a novel voltage judgement component injection scheme (VJCIS) based on current sensorless feedforward control for three-phase Vienna rectifiers. The proposed scheme combines three different functionalities:
1. The voltage judgement component injection scheme enables zero-sequence calculation based solely on voltage signals. It takes into account both balanced and unbalanced scenarios of output capacitor voltages while maintaining the input current without zero crossing distortion and improving the DC output performance by suppressing disturb-ances in the neutral point voltage.
2. In order to reduce the circuit size and cost, the Vienna rectifier topology is analyzed and the current sensorless control architecture is designed and implemented by combining the main structure with the proposed zero-sequence injection method.
3. Considering the limitations of the current sensorless architecture due to the sin-gle-voltage loop PI controller, which affects the transient response and performance of the output voltage, this paper proposes a feedforward control architecture. By predicting the steady-state conditions of the Vienna circuit in advance and performing error track-ing compensation, it improves voltage overshoot and compensates for the voltage drop across power semiconductor devices.
Finally, the proposed methods are analyzed through simulation results and compared with the implementation of a 2.4 kW Vienna converter. The consistency between the simulation and implementation verifies the effectiveness and accuracy of the proposed methods.
關鍵字(中) ★ Vienna 整流器
★ 零交越失真
★ 電壓成分判斷注入法
★ 無電流感測
★ 前饋控制
關鍵字(英) ★ Vienna Rectifier
★ Zero Crossing Distortion
★ Voltage Judgment Component Injection Scheme
★ Current Sensorless
★ Feedforward Control
論文目次 摘要·i
Abstract·ii
致謝·iv
目錄·v
圖目錄·viii
表目錄·xxvii
第一章 簡介·1
1-1 研究背景與動機·1
1-2 文獻回顧·3
1-3 本論文之貢獻·6
1-4 論文架構概述·9
第二章 三相 Vienna 整流器電路·10
2-1 前言·10
2-2 三相 Vienna 整流器架構及工作原理·11
2-3 三相 Vienna 整流器不同脈波寬度調變探討·15
2-3-1 連續型脈波寬度調變(Continuous PWM)·15
2-3-2 不連續型脈波寬度調變(Discontinuous PWM)·19
2-4 三相 Vienna 整流器無感測架構探討·27
2-4-1 無電壓感測應用(Voltage Sensorless Application)·27
2-4-2 無電流感測應用(Current Sensorless Application)·28
第三章 傳統三相 Vienna 整流器控制策略·30
3-1 前言·30
3-2 Vienna 整流器雙迴路控制·31
3-2-1 向量合成及零交越失真(Zero Crossing Distortion)成因
·31
3-2-2 Vienna 雙迴路電壓導向控制架構·37
3-3 中性點(Neutral Point)電壓控制差異性·39
3-3-1 交疊成分注入法(Overlapped Component Injection
Scheme,OCIS)[6]·39
3-3-2 分段成分注入法(Segmented Component Injection
Scheme,SCIS)[7]·46
3-4 鎖頻迴路·56
3-4-1 雙二階廣義積分正交訊號產生器(Dual Second Order
Generalized Integrator FLL, DSOGI-FLL)[24]·56
3-4-2 比例諧振控制器(Proportional-Resonant Controller,
PR)·58
3-5 無電流感測三相六開關系統控制[25]·59
3-5-1 非理想開關之電路分析·59
3-5-2 狀態平均方程式及三相參考訊號推導·63
第四章 新型無電流感測 Vienna 控制策略·66
4-1 前言·66
4-2 電壓成分判斷注入法(Voltage Judgement Component Injection
Scheme, VJCIS)·67
4-3 無電流感測三相 Vienna 整流器之系統控制·78
4-3-1 狀態平均方程式推導·78
4-3-2 無電流感測架構之電壓成分判斷注入法·88
4-4 前饋控制應用(Feedforward Control Application)·94
4-4-1 狀態平均方程式推導·94
4-4-2 電感電壓及電流訊號估測·98
4-5 分析不同 MI 下與不平衡參數 k 之範圍·103
第五章 模擬結果·104
5-1 前言·104
5-2 模擬電路與元件參數·105
5-3 傳統交疊成分注入法(OCIS)架構模擬結果·114
5-4 傳統分段成分注入法(SCIS)架構模擬結果·118
5-5 所提電壓成分判斷注入法(VJCIS)架構模擬結果·122
5-6 基於無電流感測器前饋控制之新型電壓判斷成分注入法模擬結果·126
第六章 實作電路結果·152
6-1 實作電路·152
6-2 傳統交疊成分注入法(OCIS)架構實作結果·160
6-3 傳統分段成分注入法(SCIS)架構實作結果·164
6-4 所提電壓成分判斷注入法(VJCIS)架構實作結果·168
6-5 基於無電流感測器前饋控制之新型電壓判斷成分注入法實作結果·172
6-6 Vienna 整流器於不同控制架構下比較實作結果·198
第七章 結論與未來展望·210
7-1 論文內容總結·210
7-2 未來展望·211
參考文獻·212
參考文獻 [1] J. W. Kolar and F. C. Zach, "A novel three-phase utility interface minimizing line current harmonics of high-power telecommunications rectifier modules," IEEE Transactions on Industrial Electronics, vol. 44, no. 4, pp. 456-467, Aug. 1997.
[2] Chongming Qiao and K. M. Smedley, "Three-phase unity-power-factor star-connected switch (VIENNA) rectifier with unified constant-frequency integration control," IEEE Transactions on Power Electronics, vol. 18, no. 4, pp. 952-957, July 2003.
[3] R. Lai, F. Wang, R. Burgos, D. Boroyevich, D. Jiang and D. Zhang, "Average Modeling and Control Design for VIENNA-Type Rectifiers Considering the DC-Link Voltage Bal-ance," IEEE Transactions on Power Electronics, vol. 24, no. 11, pp. 2509-2522, Nov. 2009.
[4] J. Lee and K. Lee, "A Novel Carrier-Based PWM Method for Vienna Rectifier With a Variable Power Factor," IEEE Transactions on Industrial Electronics, vol. 63, no. 1, pp. 3-12, Jan. 2016.
[5] Z. Zhang, G. Zhang, G. Wang, J. Wang, D. Ding and D. Xu, "A Hybrid Modulation Strategy With Neutral Point Voltage Balance Capability for Electrolytic Capacitorless Vi-enna Rectifiers," IEEE Transactions on Power Electronics, vol. 37, no. 12, pp. 14294-14305, Dec. 2022.
[6] W. Ding, C. Zhang, F. Gao, B. Duan and H. Qiu, "A Zero-Sequence Component Injection Modulation Method With Compensation for Current Harmonic Mitigation of a Vienna Rectifier," IEEE Transactions on Power Electronics, vol. 34, no. 1, pp. 801-814, Jan. 2019.
[7] W. Ding, H. Qiu, B. Duan, X. Xing, N. Cui and C. Zhang, "A Novel Segmented Com-ponent Injection Scheme to Minimize the Oscillation of DC-Link Voltage Under Balanced and Unbalanced Conditions for Vienna Rectifier," IEEE Transactions on Power Electron-ics, vol. 34, no. 10, pp. 9536-9551, Oct. 2019.
[8] B. Xu, K. Liu, X. Ran, Q. Huai and S. Yang, "Model Predictive Duty Cycle Control for Three-Phase Vienna Rectifiers With Reduced Neutral-Point Voltage Ripple Under Unbal-anced DC Links," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 5, pp. 5578-5590, Oct. 2022.
[9] R. Lai, F. Wang, R. Burgos, D. Boroyevich, D. Jiang and D. Zhang, "Average Modeling and Control Design for VIENNA-Type Rectifiers Considering the DC-Link Voltage Bal-ance," IEEE Transactions on Power Electronics, vol. 24, no. 11, pp. 2509-2522, Nov. 2009.
[10] J. -S. Lee and K. -B. Lee, "A Novel Carrier-Based PWM Method for Vienna Rectifier With a Variable Power Factor," IEEE Transactions on Industrial Electronics, vol. 63, no. 1, pp. 3-12, Jan. 2016.
[11] C. Dang, F. Wang, X. Tong, D. Liu, X. Mu and W. Song, "An Improved Voltage Sensor-less Model Predictive Direct Power Control for Vienna Rectifier," 2021 IEEE 1st Interna-tional Power Electronics and Application Symposium (PEAS), Shanghai, China, 2021, pp. 1-6.
[12] F. Yu, X. Liu, X. Zhang and Z. Zhu, "Model Predictive Virtual-Flux Control of Three-Phase Vienna Rectifier Without Voltage Sensors," IEEE Access, vol. 7, pp. 169338-169349, 2019.
[13] S. Prakash P, R. Kalpana, B. Singh and G. Bhuvaneswari, "Design and Implementation of Sensorless Voltage Control of Front-End Rectifier for Power Quality Improvement in Tel-ecom System," IEEE Transactions on Industry Applications, vol. 54, no. 3, pp. 2438-2448, May-June 2018.
[14] D. Mukherjee and D. Kastha, "Voltage Sensorless Control of VIENNA Rectifier in the Input Current Oriented Reference Frame," IEEE Transactions on Power Electronics, vol. 34, no. 8, pp. 8079-8091, Aug. 2019.
[15] N. B. Youssef, K. Al-Haddad and H. -Y. Kanaan, "Sensorless Nonlinear Control of a Three-Phase/ Switch/ Level Vienna Rectifier Based on a Numerical Reconstruction of DC and AC Voltages," 2008 IEEE Industry Applications Society Annual Meeting, Edmonton, AB, Canada, 2008, pp. 1-7.
[16] B. Wang, G. Venkataramanan and A. Bendre, "Unity Power Factor Control for Three-Phase Three-Level Rectifiers Without Current Sensors," IEEE Transactions on In-dustry Applications, vol. 43, no. 5, pp.1341-1348, Sept.-oct. 2007.
[17] Y. -H. Liao, W. -H. Hsu and B. -R. Xie, "A Linearized Time-Invariant Voltage-Sensorless Direct Power Control for Three-Phase Vienna Rectifiers," IEEE Access, vol. 11, pp. 59033-59048, 2023.
[18] J. -S. Lee and K. -B. Lee, "Performance Analysis of Carrier-Based Discontinuous PWM Method for Vienna Rectifiers With Neutral-Point Voltage Balance," IEEE Transactions on Power Electronics, vol. 31, no. 6, pp. 4075-4084, June 2016.
[19] Y. Ming et al., "A Hybrid Carrier-Based DPWM With Controllable NP Voltage for Three-Phase Vienna Rectifiers," IEEE Transactions on Transportation Electrification, vol. 8, no. 2, pp. 1874-1884, June 2022.
[20] Y. Zou et al., "Dynamic-Space-Vector Discontinuous PWM for Three-Phase Vienna Rec-tifiers With Unbalanced Neutral-Point Voltage," IEEE Transactions on Power Electronics, vol. 36, no. 8, pp. 9015-9026, Aug. 2021.
[21] Z. He et al., "A Hybrid DPWM for Vienna Rectifiers Based on the Three-Level to Two-Level Conversion," IEEE Transactions on Industrial Electronics, vol. 69, no. 9, pp. 9429-9439, Sept. 2022.
[22] L. Zhang et al., "A Modified DPWM With Neutral Point Voltage Balance Capability for Three-Phase Vienna Rectifiers," IEEE Transactions on Power Electronics, vol. 36, no. 1, pp. 263-273, Jan. 2021.
[23] J. Wang, S. Ji, S. Liu, H. Jiang and W. Jiang, "A Discontinuous PWM Strategy to Control Neutral Point Voltage for Vienna Rectifier With Improved PWM Sequence," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 3, pp. 3230-3241, June 2022.
[24] P. Rodríguez, A. Luna, I. Candela, R. Mujal, R. Teodorescu and F. Blaabjerg, "Multireso-nant Frequency-Locked Loop for Grid Synchronization of Power Converters Under Dis-torted Grid Conditions," IEEE Transactions on Industrial Electronics, vol. 58, no. 1, pp. 127-138, Jan. 2011.
[25] H. -C. Chen, C. -Y. Lu and G. -T. Li, "Design and Implementation of Three-Phase Current Sensorless Control for PFC Bridge Converter With Considering Voltage Drops of Power Semiconductors," IEEE Transactions on Industrial Electronics, vol. 65, no. 12, pp. 9234-9242, Dec. 2018.
指導教授 廖益弘(Yi-Hung Liao) 審核日期 2023-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明