博碩士論文 110521123 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:52.14.109.61
姓名 林學陽(Hsueh-Yang Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以超表面實現可展開網狀反射面天線之增益改 進
(Gain Enhancement of Deployable Mesh Reflector Antennas Using Metasurfaces)
相關論文
★ 基於慢波結構之槽孔天線微型化★ 應用於毫米波封裝之鎊線分析與設計
★ 應用於毫米波封裝之覆晶連結分析與設計★ 基於類表面電漿之機械可調導波結構於高頻地波雷達之應用
★ 用於第五代行動通訊之類表面電漿微型圓極化槽孔天線★ 一種用於陣列天線場型合成之混合最佳化方法
★ 一種基於類表面電漿之高頻地波雷達部署方法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-12-27以後開放)
摘要(中) 本篇論文主要探討展開網狀反射面天線結合超表面運用於衛星天線系統上,希望設計出能夠在工作頻寬內擁有穩定高增益與高指向性來達成太空任務。研究著重於三個部分,包含饋入天線系統、展開網狀反射面天線系統與改進展開網狀反射面天線增益的超表面。
饋入天線系統設計主要以鋁製作完成,結構有兩個部份,一為號角天線,二為正交模態轉換器。在中心頻率9.5GHz時,垂直極化端口與水平極化端口量測的增益分別為9.54dBi與9.58dBi,極化隔離度均達到30dB以上。
對於展開網狀反射面天線系統而言,本篇論文設計了一個焦距為1.5米、直徑為3.8米、F/D為0.39的反射面天線。本篇論文分析了理想拋物反射面天線與實際工程製造考量的差異,針對拋物反射面的傘骨數量、環形平台面積大小進行了不同結構的模擬比對,包含模擬傘骨數量24隻、30隻、36隻與環形平台大小1.1米和1.4米。希望衛星天線系統在可用的酬載體積與重量限制下,保有機械結構穩定度與高增益、低旁辦波束的射頻性能。本篇論文中所設計的理想拋物反射面天線在中心頻率9.5GHz時,垂直極化端口激發的增益為49.52 dBi,水平極化端口激發的增益為 49.55dBi。在各項機械穩定度的評估後,選擇36隻傘骨與1.1米環形平台來平衡機械結構與電性的取捨,但這也導致增益的下降。
本篇論文發現在展開網狀反射面天線系統中,環形平台的大小對增益的影響最為明顯。所以本篇論文提出了一個超表面天線取代環形平台,藉由不同尺寸的超表面天線單元產生不同所需的反射補償相位,所設計的超表面天線單元反射補償相位涵蓋0~360度,並擁有很好的反射補償相位梯度斜率。為驗證所設計的超表面天線單元,本篇論文設計了一個焦距為190mm,直徑為480mm的超表面天線。在中心頻率9.5GHz時,垂直極化端口激發的增益為29.95 dBi,水平極化端口激發的增益為30.05dBi,模擬與量測兩者的增益近乎貼合。相比之下,當超表面天線替換成只有環形平台的平面結構時,增益僅為11.45dBi。同時,本篇論文也模擬了相同焦距直徑比的理想拋物反射面天線,儘管超表面天線的增益仍比理想拋物反射面天線低1.4dBi,但超表面天線已經大幅彌補了因環形平台所損失的增益。
最後,本篇論文將所設計的超表面天線單元與包含36隻傘骨和1.1米環形平台的展開網狀反射面天線結合,模擬結果顯示,所設計的超表面天線在改善展開網狀反射面天線增益有很大的效果,改善了因環形平台對展開網狀反射面天線所帶來的影響。
摘要(英) This paper primarily explores the deployable mesh reflector antennas with metasurfaces in satellite antenna systems. The objective is to devise a system that can maintain high gain and high directivity throughout the operating bandwidth, thereby enhancing its suitability for space missions. The research is centered around three key components: the feed antenna system, the deployable mesh reflector antenna system, and the metasurfaces to enhance the gain of the deployable mesh reflector antenna.
The feed antenna system design is mainly made of aluminum. This structure comprises two main components: a horn antenna and an orthomode transducer. At the central frequency of 9.5 GHz, the measured gains for the vertical polarization port and horizontal polarization port are 9.54 dBi and 9.58 dBi, respectively. Additionally, the polarization isolation exceeds 30 dBi.
In the context of the deployable mesh reflector antenna system, this paper presents the design of a reflector antenna featuring a focal length of 1.5 meters and a diameter of 3.8 meters, the F/D ratio is 0.39. This paper examines the disparities between the ideal parabolic reflector antenna and practical engineering manufacturing constraints. It conducts a simulation-based comparative analysis of various configurations, varying the number of parabolic reflector ribs and the dimensions of the circular platform. The simulations include cases with 24, 30, and 36 ribs, along with circular platform sizes of 1.1 meters and 1.4 meters. The aim is to ensure that the satellite antenna system maintains mechanical and structural stability while delivering high-gain, low side lobe level performance within the given payload volume and weight limitations.The ideal parabolic reflector antenna designed in this paper is operated at a center frequency of 9.5 GHz, the gain for the vertical polarization port is 49.52 dBi and the gain for the horizontal polarization port is 49.55 dBi. After various mechanical stability evaluations, 36 ribs and a 1.1-meter circular platform were selected to balance the trade-off between mechanical structure and electrical properties, but this also resulted in a decrease in gain.
This paper found that the size of the circular platform has the most obvious impact on the gain in the deployable mesh reflector antenna system. Therefore, this paper proposes a metasurfaces antenna to replace the circular platform. Through metasurfaces of different sizes, The antenna unit generates different required reflection compensation phases. The designed metasurfaces antenna unit reflection compensation phase covers 0~360 degrees and has a good reflection compensation phase gradient slope. In order to verify the designed metasurfaces antenna unit, this paper designed a metasurfaces antenna with a focal length of 190mm and a diameter of 480mm. At the center frequency of 9.5GHz, the gain excited by the vertical polarization port is 29.95dBi, and the gain excited by the horizontal polarization port is 30.05dBi. The gains of simulation and measurement are almost consistent. In comparison, when the metasurfaces antenna was replaced with a planar structure with only a circular platform, the gain was only 11.45dBi. At the same time, this paper also simulates an ideal parabolic reflector antenna with the same focal length to diameter ratio. Although the gain of the metasurfaces antenna is still 1.4dBi lower than that of the ideal parabolic reflector antenna, the metasurfaces antenna has greatly made up for the loss caused by the circular platform.
Finally, this paper combines the designed metasurfaces antenna unit with a deployable mesh reflector antenna containing 36 ribs and a 1.1-meter circular platform. The simulation results show that the designed metasurfaces antenna improves the performance of the deployable mesh reflector antenna. The gain has a great effect and improves the impact of the circular platform on the deployable mesh reflector antenna.
關鍵字(中) ★ 衛星天線系統
★ 號角天線
★ 正交模態轉換器
★ 展開式天線
★ 超表面
關鍵字(英) ★ Satellite antenna system
★ Horn antenna
★ OrthoMode Transducer
★ Deployable antenna
★ Metasurfaces
論文目次 摘要 i
Abstract iii
誌謝 vi
目錄 vii
圖目錄 ix
表目錄 xx
第一章 緒論 1
1-1 研究背景與動機 1
1-2 研究流程與方法 5
1-3 章節架構 6
第二章 饋入結構設計 7
2.1 號角天線(Horn Antenna) 7
2.2 正交模態轉換器(Orthomode Transducer) 9
2.3 號角天線和正交模態轉換器設計 11
2.4 號角天線和正交模態轉換器模擬和量測結果 17
第三章 網狀反射面天線設計 26
3.1 反射面天線(Reflector Antenna)背景與原理 26
3.2 反射面天線設計尺寸 29
3.3 饋入天線饋入不同形式反射面結構模擬結果 31
第四章 以超表面實現增益改進 59
4.1 超表面天線(Metasurfaces Antenna) 59
4.2 反射相位延遲分布設計 62
4.3 超表面天線單元結構設計 64
4.4 超表面天線相位補償分布 73
4.5 超表面天線模擬與量測結果驗證 75
4.6 超表面天線整合網狀反射面天線模擬結果 95
第五章 結論與未來工作 106
參考文獻 108
附錄一 正交模態轉換器類型 116
附錄二 波導管校正件 117
附錄三 號角天線陣列饋入理想反射面天線模擬結果 118
附錄三 高階模態分析 125
附錄四 計算相位補償分布與建立超表面單元模型PYTHON程式碼 126
參考文獻 [1] S. Gao et al., "Antennas for Modern Small Satellites," in IEEE Antennas and Propagation Magazine, vol. 51, no. 4, pp. 40-56, Aug. 2009, doi: 10.1109/MAP.2009.5338683.
[2] S. Gao, Y. Rahmat-Samii, R. E. Hodges and X. -X. Yang, "Advanced Antennas for Small Satellites," in Proceedings of the IEEE, vol. 106, no. 3, pp. 391-403, March 2018, doi: 10.1109/JPROC.2018.2804664.
[3] S. Abulgasem, F. Tubbal, R. Raad, P. I. Theoharis, S. Lu and S. Iranmanesh, "Antenna Designs for CubeSats: A Review," in IEEE Access, vol. 9, pp. 45289-45324, 2021, doi: 10.1109/ACCESS.2021.3066632.
[4] Saito, H., Akbar, P. R., Watanabe, H., Ravindra, V., Hirokawa, J., Ura, K., & Budhaditya, P. (2017). Compact X-band synthetic aperture radar for 100kg class satellite. IEICE Transactions on Communications, 100(9), 1653-1660.
[5] M. Sakovsky, S. Pellegrino and J. Costantine, "Rapid Design of Deployable Antennas for CubeSats: A tool to help designers compare and select antenna topologies," in IEEE Antennas and Propagation Magazine, vol. 59, no. 2, pp. 50-58, April 2017, doi: 10.1109/MAP.2017.2655531.
[6] N. Chahat, R. E. Hodges, J. Sauder, M. Thomson, E. Peral and Y. Rahmat-Samii, "CubeSat Deployable Ka-Band Mesh Reflector Antenna Development for Earth Science Missions," in IEEE Transactions on Antennas and Propagation, vol. 64, no. 6, pp. 2083-2093, June 2016, doi: 10.1109/TAP.2016.2546306.
[7] N. Chahat, J. Sauder, M. Mitchell, N. Beidleman and G. Freebury, "One-Meter Deployable Mesh Reflector for Deep Space Network Telecommunication at X- and Ka-band," 2019 13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland, 2019, pp. 1-4.
[8] N. Chahat, R. E. Hodges, J. Sauder, M. Thomson and Y. Rahmat-Samii, "The Deep-Space Network Telecommunication CubeSat Antenna: Using the deployable Ka-band mesh reflector antenna," in IEEE Antennas and Propagation Magazine, vol. 59, no. 2, pp. 31-38, April 2017, doi: 10.1109/MAP.2017.2655576.
[9] Volakis, John Leonidas, and John Leonidas Volakis. Antenna engineering handBook. Vol. 1755. New York: McGraw-hill, 2007.
[10] Milligan, Thomas A. Modern antenna design. John Wiley & Sons, 2005.
[11] Schrank, Hal, and Harry Sefton. "Antenna designer′s notebook." IEEE Antennas and Propagation Society Newsletter 30.6 (1988): 17-18.
[12] C. N. P. V. Chandra Shekhar, V. Ram Nikhil Ikshwak, K. N. Ganendra Murthy and K. Deepthi, "Design and Simulation of Horn Fed Parabolic Reflector Antenna," 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 2020, pp. 19-25, doi: 10.1109/ICICCS48265.2020.9121125.
[13] A. Wahid, Chairunnisa and A. Munir, "Dual polarization X-band square horn antenna," 2016 10th International Conference on Telecommunication Systems Services and Applications (TSSA), Denpasar, Indonesia, 2016, pp. 1-5, doi: 10.1109/TSSA.2016.7871096.
[14] P. Cecchini, R. Mizzoni, G. Orlando, F. Hélière and K. Van′t Klooster, "Design and validation of a X/ Ku band feed system for ScanSAR antenna," 2015 International Conference on Electromagnetics in Advanced Applications (ICEAA), Turin, Italy, 2015, pp. 1086-1089, doi: 10.1109/ICEAA.2015.7297284.
[15] WANG, Jian; XIE, Yuan; LI, Xin. Calculation of phase center for the pyramidal horn with the method of moving reference point. Journal of University of Electronic Science and Technology of China, 2008, 37.4: 538-555.
[16] V. N. Tiwari and T. Tiwari, "Design and development of Orthomode Transducer for X-band frequency," 2015 IEEE Applied Electromagnetics Conference (AEMC), Guwahati, India, 2015, pp. 1-2, doi: 10.1109/AEMC.2015.7509133.
[17] M. A. Abdelaal, S. I. Shams and A. A. Kishk, "Asymmetric Compact OMT for X-Band SAR Applications," in IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 4, pp. 1856-1863, April 2018, doi: 10.1109/TMTT.2018.2791960.
[18] L. N. Rao and V. Santhosh Kumar, "Design and Development of Ortho-mode Transducer in L-Band for Satellite Applications," 2020 International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 2020, pp. 1118-1121, doi: 10.1109/ICICT48043.2020.9112466.
[19] Bøifot, A. M., E. Lier, and T. Schaug-Pettersen. "Simple and broadBand orthomode transducer." IEE Proceedings H (Microwaves, Antennas and Propagation). Vol. 137. No. 6. IET Digital Library, 1990
[20] K. N. Urata, J. T. Sri Sumantyo, N. Imura, K. Ito and S. Gao, "Development of a circularly polarized L-band SAR deployable mesh reflector antenna for microsatellite earth observation," 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 2017, pp. 995-996, doi: 10.1109/APUSNCURSINRSM.2017.8072540.
[21] Y. Rahmat-Samii, V. Manohar, J. M. Kovitz, R. E. Hodges, G. Freebury and E. Peral, "Development of Highly Constrained 1 m Ka-Band Mesh Deployable Offset Reflector Antenna for Next Generation CubeSat Radars," in IEEE Transactions on Antennas and Propagation, vol. 67, no. 10, pp. 6254-6266, Oct. 2019, doi: 10.1109/TAP.2019.2920223.
[22] P. Ingerson and W. Wong, "The analysis of deployable umbrella parabolic reflectors," in IEEE Transactions on Antennas and Propagation, vol. 20, no. 4, pp. 409-414, July 1972, doi: 10.1109/TAP.1972.1140236.
[23] Fan Liang Hai, "The principle error and optimal feed point of umbrella-like parabolic reflector," 2000 5th International Symposium on Antennas, Propagation, and EM Theory. ISAPE 2000 (IEEE Cat. No.00EX417), Beijing, China, 2000, pp. 697-700, doi: 10.1109/ISAPE.2000.894882.
[24] V. Manohar, J. M. Kovitz and Y. Rahmat-Samii, "Ka band umbrella reflectors for CubeSats: Revisiting optimal feed location and gain loss," 2016 International Conference on Electromagnetics in Advanced Applications (ICEAA), Cairns, QLD, Australia, 2016, pp. 800-803, doi: 10.1109/ICEAA.2016.7731520.
[25] Manohar, Vignesh, and Yahya Rahmat-Samii. "Umbrella reflector characterization for CubeSats: Analytical formulation for boresight gain loss." 2018 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM). IEEE, 2018.
[26] V. Manohar and Y. Rahmat-Samii, "Characterization of Ka-band mesh surfaces for CubeSat reflector antennas: From simple wire grid model to complex knits," 2016 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM), Boulder, CO, USA, 2016, pp. 1-2, doi: 10.1109/USNC-URSI-NRSM.2016.7436242.
[27] Jin, Jian-Ming. The finite element method in electromagnetics. John Wiley & Sons, 2015.
[28] Balanis, Constantine A. Advanced engineering electromagnetics. John Wiley & Sons, 2012.
[29] Luo, X. Principles of electromagnetic waves in metasurfaces. Sci. China Phys. Mech. Astron. 58, 594201 (2015). https://doi.org/10.1007/s11433-015-5688-1
[30] YU, Nanfang, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. science, 2011, 334.6054: 333-337.
[31] Sun, S., He, Q., Xiao, S. et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nature Mater 11, 426–431 (2012). https://doi.org/10.1038/nmat3292
[32] SUN Shu-Lin, HE Qiong, ZHOU Lei. Electromagnetic metasurfaces[J]. PHYSICS, 2015, 44(06): 366-376. doi: 10.7693/wl20150603
[33] 羅先剛. 亞波長電磁學: 上冊. 科學社版社, 2017.
[34] 羅先剛. 亞波長電磁學: 下冊. 科學社版社, 2017.
[35] Nayeri, Payam, Fan Yang, and Atef Z. Elsherbeni. "Reflectarray antennas: theory, designs, and applications." (2018).
[36] Huang, John, and Jose Antonio Encinar. Reflectarray antennas. John Wiley & Sons, 2007.
[37] A. G. Cherevko and Y. V. Morgachev, "Unit Cells of Flexible Printed Graphene Reflectarray Antenna for Satellite and Microwave Communications," 2021 XV International Scientific-Technical Conference on Actual Problems Of Electronic Instrument Engineering (APEIE), Novosibirsk, Russian Federation, 2021, pp. 28-33, doi: 10.1109/APEIE52976.2021.9647506.
[38] M. E. Bialkowski and K. H. Sayidmarie, "Investigations Into Phase Characteristics of a Single-Layer Reflectarray Employing Patch or Ring Elements of Variable Size," in IEEE Transactions on Antennas and Propagation, vol. 56, no. 11, pp. 3366-3372, Nov. 2008, doi: 10.1109/TAP.2008.2005470.
[39] A. Edalati and K. Sarabandi, "Wideband reflectarray antenna based on miniaturized element frequency selective surfaces," 2012 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, 2012, pp. 362-364, doi: 10.1109/EuCAP.2012.6206247.
[40] M. R. Chaharmir, J. Shaker, M. Cuhaci and A. Ittipiboon, "A broadBand reflectarray antenna with double square rings as the cell elements," 2006 First European Conference on Antennas and Propagation, Nice, France, 2006, pp. 1-4, doi: 10.1109/EUCAP.2006.4584613.
[41] Y. Mao, S. Xu, F. Yang and A. Z. Elsherbeni, "A Novel Phase Synthesis Approach for Wideband Reflectarray Design," in IEEE Transactions on Antennas and Propagation, vol. 63, no. 9, pp. 4189-4193, Sept. 2015, doi: 10.1109/TAP.2015.2447004.
[42] R. Deng, S. Xu, F. Yang and M. Li, "A Single-Layer High-Efficiency Wideband Reflectarray Using Hybrid Design Approach," in IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 884-887, 2017, doi: 10.1109/LAWP.2016.2613882.
[43] B. Van Ha, P. Pirinoli, R. E. Zich and M. Mussetta, "Dual-parameter concentric ring RA elements," 2012 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, 2012, pp. 359-361, doi: 10.1109/EuCAP.2012.6206118.
[44] VAN HA, Bui, et al. Reflectarray antenna for X-band satellite communication. In: 2012 Fourth International Conference on Communications and Electronics (ICCE). IEEE, 2012. p. 417-420.
[45] S. Siddha, A. Rahman and R. R. Mahmud, "Design of X-Band Reflect Array Antenna using Circular Ring Patches," 2021 3rd International Conference on Electrical & Electronic Engineering (ICEEE), Rajshahi, Bangladesh, 2021, pp. 49-52, doi: 10.1109/ICEEE54059.2021.9718775.
[46] F. Yang, Y. Kim, A. Yu, J. Huang and A. Elsherbeni, "A Single Layer Reflectarray Antenna for C/X/Ka Bands Applications," 2007 International Conference on Electromagnetics in Advanced Applications, Turin, Italy, 2007, pp. 1058-1061, doi: 10.1109/ICEAA.2007.4387492.
[47] R. Deng, F. Yang, S. Xu and M. Li, "Design of a dual-frequency broadband reflectarray using triple-resonance elements," 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Vancouver, BC, Canada, 2015, pp. 2169-2170, doi: 10.1109/APS.2015.7305473.
[48] P. Zhang and W. Zhang, "Low SLL and High Gain Reflectarray Antenna Based on Metasurface," 2022 International Applied Computational Electromagnetics Society Symposium (ACES-China), Xuzhou, China, 2022, pp. 1-3, doi: 10.1109/ACES-China56081.2022.10064904.
[49] J. Yang, H. Xin and M. -C. Tang, "Ultra-BroadBand Reflectarray Antenna Using Multi-Layer Metasurface," 2022 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Harbin, China, 2022, pp. 1-3, doi: 10.1109/ICMMT55580.2022.10023116.
[50] S. Varghese and B. Ghosh, "Design of a Polarization Reconfigurable PGMS Reflectarray Antenna," 2019 IEEE Indian Conference on Antennas and Propogation (InCAP), Ahmedabad, India, 2019, pp. 1-4, doi: 10.1109/InCAP47789.2019.9134622.
[51] K. Hu, Y. Zhang, L. Zou, H. Liang and T. Jiang, "Study on high-gain reflectarray antenna for X-band based on phase gradient ultra-thin surface structure," 2023 24th International Vacuum Electronics Conference (IVEC), Chengdu, China, 2023, pp. 1-2, doi: 10.1109/IVEC56627.2023.10157255.
[52] J. Yang, H. Xin and M. -C. Tang, "BroadBand, Low-Profile, Planar Reflectarray Antenna Based on an Achromatic Metasurface," in IEEE Transactions on Antennas and Propagation, vol. 71, no. 6, pp. 5440-5445, June 2023, doi: 10.1109/TAP.2023.3262317.
[53] P. -Y. Qin, Y. J. Guo and A. R. Weily, "BroadBand Reflectarray Antenna Using Subwavelength Elements Based on Double Square Meander-Line Rings," in IEEE Transactions on Antennas and Propagation, vol. 64, no. 1, pp. 378-383, Jan. 2016, doi: 10.1109/TAP.2015.2502978.
[54] G. Zhao, Y. -C. Jiao, F. Zhang and F. -S. Zhang, "A Subwavelength Element for BroadBand Circularly Polarized Reflectarrays," in IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 330-333, 2010, doi: 10.1109/LAWP.2010.2047836.
[55] Q. -Y. Li, Y. -C. Jiao and G. Zhao, "A Novel Microstrip Rectangular-Patch/Ring- Combination Reflectarray Element and Its Application," in IEEE Antennas and Wireless Propagation Letters, vol. 8, pp. 1119-1122, 2009, doi: 10.1109/LAWP.2009.2033620.
[56] A. Edalati and K. Sarabandi, "Wideband reflectarray antenna based on miniaturized element frequency selective surfaces," 2012 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, 2012, pp. 362-364, doi: 10.1109/EuCAP.2012.6206247.
[57] Ma, B., Lu, F., Zhi, G. et al. Development of an X-Band Reflectarray Antenna for Satellite Communications. Sci Rep 11, 6530 (2021). https://doi.org/10.1038/s41598-021-85132-6
[58] Q. -Y. Chen, S. -W. Qu, X. -Q. Zhang and M. -Y. Xia, "Low-Profile Wideband Reflectarray by Novel Elements With Linear Phase Response," in IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 1545-1547, 2012, doi: 10.1109/LAWP.2012.2232899.
[59] F. Xue, H. -J. Wang, M. Yi, G. Liu and X. -C. Dong, "Design of a BroadBand Single-Layer Linearly Polarized Reflectarray Using Four-Arm Spiral Elements," in IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 696-699, 2017, doi: 10.1109/LAWP.2016.2600374.
[60] S. Siddha, A. Rahman and R. R. Mahmud, "Design of X-Band Reflect Array Antenna using Circular Ring Patches," 2021 3rd International Conference on Electrical & Electronic Engineering (ICEEE), Rajshahi, Bangladesh, 2021, pp. 49-52, doi: 10.1109/ICEEE54059.2021.9718775.
[61] V. G. Ataloglou, M. Chen, M. Kim and G. V. Eleftheriades, "Microwave Huygens’ Metasurfaces: Fundamentals and Applications," in IEEE Journal of Microwaves, vol. 1, no. 1, pp. 374-388, Jan. 2021, doi: 10.1109/JMW.2020.3034578.
指導教授 歐陽良昱(Liang-Yu Ou Yang) 審核日期 2024-1-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明