博碩士論文 110521125 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:112 、訪客IP:13.59.72.129
姓名 翁彥琦(Yan-Qi Weng)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於第五代無線通訊之採用電流合成暨變壓器耦合技術互補式金氧半導體功率放大器研製
(Implementations on CMOS Power Amplifiers Utilizing Current Combining and Transformer-Coupled Techniques for Fifth-Generation Wireless Communication Applications)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文使用台灣積體電路製造股份有限公司(tsmcTM ) 所提供之0.18-µm CMOS 1P6M製程,對於n77到n79頻段的功率放大器,採用兩種不同的功率合成技術,並透過濾波器的分析與變壓器的等效,分析匹配網路的損耗和構成條件,達成匹配網路的最佳化,實現功率放大器之設計。
第一顆提出應用於n79頻段的單級電流合成式功率放大器,針對電流合成結構所帶來的低阻抗問題,透過選擇適當的電晶體尺寸,讓電晶體的輸出最佳負載阻抗,更貼近輸出匹配的阻抗點,使匹配網路更容易設計和製造。最終在4.4 - 5.0 GHz的頻段內最佳傳輸增益為12 dB,飽和輸出功率為27.1 dBm,功率附加效率最高可達16.5 %,晶片面積為 3.51 (2.02 × 1.73) mm2。
第二顆提出應用於n77- n79頻段之使用二對一的變壓器匹配的功率放大器,使用特定的閘級偏壓及電晶體尺寸,將電晶體的輸出最佳負載阻抗,與輸出阻抗呈現特定的比例,以此實現二對一的變壓器匹配,並且透過特殊的電路佈局,降低變壓器匹配的寄生電容,也有效的壓縮匹配網路的電路面積,最終在3.6 - 5.6 GHz的頻段內,最佳傳輸增益為10 dB,飽和輸出功率為26 dBm,功率附加效率最高可達19.4 %,晶片面積為 2.22 (2.13 × 1.04) mm²。
摘要(英) This thesis utilizes the 0.18-µm CMOS 1P6M process provided by Taiwan Semiconductor Manufacturing Company (tsmc™). It investigates two distinct power combining techniques for power amplifiers operating within the n77 to n79 frequency bands. The analysis centers on filter and transformer topologies, delving into the loss and constituent conditions of the matching network to optimize its configuration, thereby facilitating the design of power amplifiers.
The first proposed amplifier is a single-stage current combining power amplifier tailored for the n79 frequency band. To mitigate the low impedance challenges inherent in the current combining structure, appropriate transistor sizing is employed to optimize the transistor′s output load impedance, aligning it more closely with the impedance point of the output match. This approach makes the design and fabrication of the matching network easier. Ultimately, within the frequency range of 4.4 - 5.0 GHz, the achieved performance metrics include an optimal gain of 12 dB, a saturation output power of 27.1 dBm, and a peak power-added efficiency of 16.5%. The chip area measures 3.51 (2.02 × 1.73) mm².
The subsequent proposed amplifier targets the n77 to n79 frequency bands, employing a two-to-one transformer matching approach. Through the utilization of specific gate bias and transistor sizes, the optimization of the transistor′s output load impedance is aimed at establishing a defined ratio with the output impedance, thereby achieving the intended two-to-one transformer matching. Additionally, a specialized circuit layout is implemented to reduce the parasitic capacitance associated with the transformer matching, effectively compacting the circuit area of the matching network. Ultimately, within the frequency range of 3.6 - 5.6 GHz, this configuration attains an optimal gain of 10 dB, a saturation output power of 26 dBm, and the highest power-added efficiency of 19.4%. The chip area measures 2.22 (2.13 × 1.04) mm².
關鍵字(中) ★ 功率放大器
★ 電流合成
★ 磁耦合共振腔
關鍵字(英) ★ Power Amplifier
★ Current Combining
★ Transformer
論文目次 目錄
摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 ix
第一章 緒論 1
1-1 研究動機 1
1-2 研究成果 2
1-3 章節簡介 2
第二章 應用於第五代通訊之互補式金氧半導體電流合成式功率放大器 3
2-1 研究現況 3
2-2 電流合成技術介紹 5
2-3 堆疊式架構介紹 8
2-4 磁耦合變壓器介紹 11
2-5 磁耦合共振腔對濾波器合成介紹 15
2-6 磁耦合共振腔對差分訊號對單端訊號的轉換 30
2-7 電路架構與設計 33
2-3-1 電路架構圖 33
2-3-2 電晶體尺寸及偏壓選擇 38
2-3-3 輸出匹配電路設計 42
2-3-4 輸入匹配電路設計 51
2-8 電路模擬與量測結果 58
2-9 結果比較與討論 67
第三章 使用二對一變壓器匹配基於第五代通訊之互補式金氧半導體功率放大器 70
3-1 研究現況 70
3-2 二對一變壓器結構介紹 72
3-3 電路架構與設計 74
3-3-1 電路架構圖 74
3-3-2 電晶體尺寸及偏壓選擇 77
3-3-3 輸出匹配電路設計 79
3-3-4 輸入匹配電路設計 88
3-4 電路模擬與量測結果 97
3-5 結果比較與討論 110
第四章 結論 114
4-1 總結 114
4-2 未來方向 115
參考文獻 117
參考文獻 參考文獻
[1] C. E. SHANNON, " A Mathematical Theory of Communication," in Reprinted with corrections from The Bell System Technical Journal, vol. 27, pp. 379–423, 623–656, July, Oct, 1948.
[2] Jeng-Han Tsai, " Design of a 5.2-GHz CMOS Power Amplifier Using TF-Based 2-Stage Dual-Radial Power Splitting/Combining Architecture," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 10, Oct 2019.
[3] S. Pornpromlikit, J. Jeong, C. D. Presti, A. Scuderi and P. M. Asbeck, "A watt-level stacked-FET linear power amplifier in silicon-on-insulator CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 1, pp. 57-64, Jan. 2010.
[4] Lei Zhang, Kaixue Ma, Haipeng Fu, " A 60-GHz 32-Way Hybrid Power Combination Power Amplifier in 55-nm Bulk CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 71, no. 2, Feb 2023.
[5] Y. Eo, K. Lee, “A fully integrated 24-dBm CMOS power amplifier for 802.11a WLAN applications,” IEEE Microwave and Wireless Components Letters, vol. 14, no. 11, pp. 504–506, Nov. 2004.
[6] M. Fathi, D. K. Su, and B. A. Wooley, “A 30.3 dBm 1.9 GHz-bandwidth 2×4-array stacked 5.3 GHz CMOS power amplifier,” in IEEE Int. Solid State Circuits Conf. (ISSCC) Dig. Tech. Papers.
[7] J. S. Park, S. Hu, Y. Wang, and H. Wang, “A highly linear dual band mixed-mode polar power amplifier in CMOS with an ultra compact output network,” IEEE J. Solid State Circuits, vol. 51, no. 8, pp. 1756–1770, Aug. 2016.
[8] H. Dabag, B. Hanafi, F. Golcuk, A. Agah, J. F. Buckwalter and P. M. Asbeck, "Analysis and design of stacked-FET millimeter-wave power amplifiers," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 4, pp. 1543-1556, Apr 2013.
[9] Mohammad Javad Zavarei, Kyunghwan Kim, Ho-Jin Song, " A 26–40 GHz Wideband Power Amplifier With Transformer-Based High-Order Matching Networks in 28-nm CMOS FD-SOI," IEEE Microwave and Wireless Components Letters, vol. 32, no. 9, Sep 2022.
[10] I. Aoki, S. D. Kee, D. B. Rutledge and A. Hajimiri, "Distributed active transformer-a new power-combining and impedance-transformation technique," IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 1, pp. 316-331, Jan. 2002.
[11] T. Yao et al., "Algorithmic design of CMOS LNAs and PAs for 60-GHz radio," in IEEE Journal of Solid-State Circuits, vol. 42, no. 5, pp. 1044-1057, May 2007.
[12] C. Lin and H. Chang, "A broadband injection-locking class-E power amplifier," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 10, pp. 3232-3242, Oct. 2012.
[13] J.-K. Nai, Y.-H. Hsiao, Y. Wang, F. Chen, and H. Wang, “5-GHz transformer combined class-F−1 power amplifier,” in Proc. IEEE Int. Symp. Radio-Freq. Integr. Technol. (RFIT), Aug. 2016, pp. 1–3.
[14] A. Afsahi, A. Behzad, V. Magoon, and L. E. Larson, “Linearized dual band power amplifiers with integrated baluns in 65 nm CMOS for a 2×2 802.11n MIMO WLAN SoC,” IEEE Journal of Solid-State Circuits, vol. 45, no. 5, pp. 955–966, May 2010.
[15] S. Kang, D. Baek, and S. Hong, “A 5-GHz WLAN RF CMOS power amplifier with a parallel-cascoded configuration and an active feed back linearizer,” IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 9, pp. 3230–3244, Sep. 2017.
[16] Y. Dong, L. Mao and S. Xie, "Fully integrated class-J power amplifier in standard CMOS technology," IEEE Microwave and Wireless Components Letters, vol. 27, no. 1, pp. 64-66, Jan. 2017.
[17] Jeng-Han Tsai, and Jen-Wei Wang, " An X-Band Half-Watt CMOS Power Amplifier Using Interweaved Parallel Combining Transformer," IEEE Microwave and Wireless Components Letters, vol. 27, no. 5, May 2017.
[18] Hayeon Jeong, Hui Dong Lee, Bonghyuk Park, Seunghyun Jang, Sunwoo Kong, and Changkun Park," Three-Stacked CMOS Power Amplifier to Increase Output Power With Stability Enhancement for mm-Wave Beamforming Systems," IEEE Transactions on Microwave Theory and Techniques, vol. 71, no. 6, Jun 2023.
[19] Guixiang Jin, Na Yan, Yue Lin, and Hongtao Xu," A Linear CMOS Power Amplifier With Efficiency-Optimized Transformer Matching," IEEE Microwave and Wireless Components Letters, vol. 32, no. 9, Sep 2022.
[20] Wei-Cheng Huang, Huei Wang, " An Inductive-Neutralized 26-dBm K-/Ka-Band Power Amplifier With 34% PAE in 90-nm CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 11, Nov 2019.
[21] H an-Woong Choi, Sunkyu Choi, Jeong-Taek Lim, and Choul-Young Kim," 1-W, High-Gain, High-Efficiency, and Compact Sub-GHz Linear Power Amplifier Employing a 1:1 Transformer Balun in 180-nm CMOS," IEEE Microwave and Wireless Components Letters, vol. 30, no. 8, Aug 2020.
指導教授 邱煥凱(Kevin Qiu) 審核日期 2024-1-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明