博碩士論文 110521169 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:3.142.156.67
姓名 李宗哲(Zong-Jhe Li)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 頻率及頻寬設計自由度提升的縮小化寬止帶基板合成波導濾波交叉器
(Compact and Wide Stopband Substrate Integrated Waveguide Filtering Crossovers with Enhanced Channel Frequency and Bandwidth Design Flexibility)
相關論文
★ 應用於微波之多頻帶通濾波器之設計★ 使用可開關式帶通濾波器之低相位雜訊雙頻振盪器研製
★ 共平面波導饋入槽孔偶極天線之寬頻與多頻應用★ 可具任意通帶之可調式多工器
★ 利用非對稱步階式阻抗設計寬通帶寬止帶雙工器★ 基於散佈式耦合饋入架構之可開關式帶通濾波器
★ 共平面波導饋入之寬頻雙圓極化天線★ 基於多共振路徑所設計之印刷式多頻帶天線
★ 四通道可切換式帶通濾波器之研究★ 雙模態寬阻帶之基板合成波導濾波器
★ 微小化倍頻壓抑直交分合波器之研製★ 可繞式小型偶極天線之研製
★ 使用多重模態共振器實現多功能帶通濾波器★ 應用於Radio-over-Fiber系統之超高速微波光子發射器
★ 使用長饋入線架構研製小型且具有高隔絕度的多工器★ 具有寬截止頻帶的帶通濾波器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-1-31以後開放)
摘要(中) 本論文研究使用基板合成波導(Substrate Integrated Waveguide)實現的三階濾波交叉器(Filtering Crossovers),其基於雙模態共振腔的TE102以及TE201兩正交模態可以實現對雙通道的交叉傳輸,以及良好的隔離效果,且透過GCPW的耦合架構增加及控制耦合量達成較高的頻寬和保留良好的隔離度,配合1/8模SIW腔體和輸入/輸出饋線的位置分配得以使寬止帶的特性出現在比例頻寬較大的設計中。大多數相關研究中往往以限制頻寬的方式使止帶範圍增加。
第一個電路使用一個雙模態(TE102、TE201)全模腔體和四個主模態(TE101)1/8模腔體在腔體間的耦合窗口上配合GCPW耦合構造所組成,中心頻率同為3GHz,3dB比例頻寬同是9%,基於全模腔體雙模態互相正交的特性,訂定雙模態腔體的窗口位置於每邊中心位置,可以有控制比例頻寬和抑制高階的模態,且藉由1/8模腔體和輸入/輸出端口配合的電路特性,將零點靠近通帶,從而使較高頻寬下擁有良好的隔離度且寬止帶特性的微小化基板合成波導濾波交叉器得以實現。
第二個電路透過金屬通孔將雙模腔體進行干擾,使其雙模態其一往高頻偏移,另一則保持不變,使其保留最小設計面積且擁有更靈活的TE102/ TE201比率,得到一原頻率的通道且擁有另一較高頻通道。
第三個電路透過蝕刻金屬槽孔改變表面電流,藉此影響雙模腔體,相對於第二片電路使其TE102或TE201模態其一往低頻偏移,使其獲取更小設計面積和靈活的TE102 /TE201比率,得到一原頻率的通道且擁有另一較低頻通道。
摘要(英) This thesis investigates a third-order filtering crossover using substrate integrated waveguide (SIW), based on the resonance of the orthogonal TE201 and TE102 modes in the dual-mode cavity. The crossover enables cross transmission between two channels with acceptable isolation. The coupling structure utilizes coplanar waveguide for increased bandwidth and good isolation control. Various methods are employed to suppress unwanted modes, resulting in the appearance of wide stopbands in designs with larger fractional bandwidth.
The first circuit consists of a full-mode (TE201, TE102) cavity and four 1/8-mode (TE101) cavities, with a 3 GHz center frequency and a 3 dB fractional bandwidth of 9%. The positioning of windows for the dual-mode cavities at the center of each side leverages the orthogonal nature of the dual-mode cavities to control the fractional bandwidth and suppress higher-order modes. The utilization of 1/8-mode and the feed characteristics at input/output ports reduce higher modes and bring transmission zeros which are closer to the passband, achieving high isolation and wide stopband characteristics in a compact SIW filter crossover.
The second circuit introduces interference to the dual-mode cavities through metal vias, causing a frequency shift in either TE102 or TE201 modes towards higher frequencies. This allows for a single original frequency channel while having another higher frequency channel with minimal design area.
The third circuit uses etched metal slots to interfere with the dual-mode cavities, causing a frequency shift in either TE102 or TE201 modes towards lower frequencies. This enables a single original frequency channel while having another lower frequency channel with a smaller design area and flexible TE102/TE201 ratio.
關鍵字(中) ★ 基板合成波導;濾波器;交叉器 關鍵字(英)
論文目次 目錄
國 立 中 央 大 學 i
摘要 ii
Abstract iii
誌謝 iv
目錄 v
圖目錄 vii
第 1 章 緒論 1
1-1 基板合成波導濾波交叉器概論 2
1-2 研究動機 3
1-3 相關研究 4
1-4 論文架構 6
第 2 章 基板合成波導應用 7
2-1 基板合成波導共振腔特性 7
2-2 全模切割 10
第 3 章 微小化寬止帶基板合成波導濾波交叉器設計 13
3-1 濾波交叉器設計原理 13
3-2 三階微小化寬止帶基板合成波導濾波交叉器原理 17
3-3 三階微小化寬止帶基板合成波導濾波交叉器模擬及量測 22
第 4 章 頻率自由度提升微小化寬阻帶基板合成濾波交叉器 31
4-1 金屬通孔對SIW模態影響 31
4-2 三階金屬通孔干擾微小化寬阻帶基板合成濾波交叉器 35
4-3 蝕刻金屬擾動槽對SIW模態影響 40
4-4 三階金屬擾動槽干擾微小化寬阻帶基板合成濾波交叉器 43
第 5 章 結論 50
第 6 章 參考文獻 51
參考文獻 第 6 章 參考文獻
[1] G. E. Ponchak and E. Tentzeris, “Development of finite ground coplanar (FGC) waveguide 90 degree crossover junctions with low coupling,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 1891–1894, Jun. 2000.
[2] T.-S. Horng, “A rigorous study of microstrip crossovers and their possible improvements,” IEEE Trans. Microw. Theory Techn., vol. 42, no. 9, pp. 1802–1806, Sep. 1994.
[3] Y. Chen and S.-P. Yeo, “A symmetrical four-port microstrip coupler for crossover application,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 11, pp. 2434–2438, Nov. 2007.
[4] J.-J. Yao, C. Lee, and S.-P. Yeo, “Microstrip branch-line couplers for crossover application,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 1, pp. 87–92, Jan. 2011.
[5] T. Djerafi and K. Wu, “60 GHz substrate integrated waveguide crossover structure,” in Proc. 39th Eur. Microw. Conf., Rome, Italy, pp. 1014–1017 , Sep./Oct. 2009.
[6] A. B. Guntupalli, T. Djerafi, and K.Wu, “Ultra-compact millimeter-wave substrate integrated waveguide crossover structure utilizing simultaneous electric and magnetic coupling,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 1–3, Jun. 2012.
[7] T.-S. Horng, “A rigorous study of microstrip crossovers and their possible improvements,” IEEE Trans. Microw. Theory Techn., vol. 42, no. 9, pp. 1802–1806, Sep. 1994.
[8] F.-L. Wong and K.-K.-M. Cheng, “A novel, planar, and compact crossover design for dual-band applications,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 3, pp. 568–573, Mar. 2011.
[9] A. Abbosh, S. Ibrahim, and M. Karim, “Ultra-wideband crossover using microstrip-to-coplanar waveguide transitions,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 10, pp. 500–502, Oct. 2012.
[10] F. Lin, Q.-X. Chu, and S. W. Wong, “Dual-band planar crossover with two-section branch-line structure,” IEEE Trans. Microw. Theory Techn.,vol. 61, no. 6, pp. 2309–2316, Jun. 2013.
[11] Y. Chen and S.-P. Yeo, "A Symmetrical Four-Port Microstrip Coupler for Crossover Application," IEEE Trans. Microw. Theory Techn., vol. 55, no. 11, pp. 2434-2438, Nov. 2007.
[12] L. Han, K. Wu, X.-P. Chen, and F. He, “Accurate analysis of finite periodic substrate integrated waveguide structures and its applications,” in IEEE MTT-S Int. Microw. Symp. Dig., Anaheim, CA, USA, pp. 864–867, May 2010.
[13] X. Feng Ye, S. Yong Zheng, and J. Hua Deng, “A compact patch crossover for millimeter-wave applications,” in Proc. Int. Workshop Electromagn., Appl. Student Innov. Competition (iWEM), Hsinchu, Taiwan, pp. 1–2, Nov. 2015.
[14] S. Y. Zheng and X. F. Ye, “Ultra-compact wideband millimeter-wave crossover using slotted SIW structure,” in Proc. IEEE Int. Workshop Electromagn., Appl. Student Innov. Competition (iWEM), Nanjing, China, pp. 1–2, May 2016.
[15] J. Bornemann and S. S. Hesari, “Scattering matrix subtraction technique for mode-matching analysis of substrate integrated waveguide junctions,” in IEEE MTT-S Int. Microw. Symp. Dig., Seville, Spain, pp. 1–3, May 2017.
[16] Y.-Y. Cao, Y.-W. Wu, Z. Jiang, and Z.-C. Hao, “A compact millimeterwave planar directional coupled crossover with a wide bandwidth,” IEEE Microw. Wireless Compon. Lett., vol. 30, no. 7, pp. 661–664, Jul. 2020.
[17] F. Cheng, X. Li, P. Lu, and K. Huang, “SIW filter with broadband stopband by suppressing the coupling of higher-order resonant modes,” Electron. Lett., vol. 55, no. 25, pp. 1345–1347, Dec. 2019.
[18] K. Zhou and K. Wu, “Compact substrate-integrated waveguide filtering crossover by embedding CPW quarter-wavelength resonators,” in Proc. IEEE/MTT-S Int. Microw. Symp. (IMS), pp. 916–919, 2020.
[19] L. Sun, H. Deng, Y. Xue, J. Zhu, and S. Xing, “Compact-balanced BPF and filtering crossover with intrinsic common-mode suppression using single-layered SIW cavity,” IEEE Microw. Wireless Compon. Lett., vol. 30, no. 2, pp. 144–147, Feb. 2020.
[20] Y. Zhou, K. Zhou, J. Zhang, C. Zhou, and W. Wu, “Miniaturized substrate integrated waveguide filtering crossover,” in Proc. IEEE Electr. Design Adv. Packag. Syst. Symp. (EDAPS), Haining, China, pp. 1–3, Dec. 2017.
[21] K. Zhou and K. Wu, “Multi-channel SIW filtering crossover with flexibly specified frequencies and bandwidths,” in Proc. IEEE USNC-CNC-URSI North Amer. Radio Sci. Meeting, pp. 117–118, Jul. 2020.
[22] S. Han, K. Zhou, J. Zhang, C. Zhou, and W. Wu, “Novel substrate integrated waveguide filtering crossover using orthogonal degenerate modes,” IEEE Microw. Wireless Compon. Lett., vol. 27, no. 9, pp. 803–805, Sep. 2017.
[23] S. S. Hesari and J. Bornemann, “Substrate integrated waveguide crossover formed by orthogonal TE102 resonators,” in Proc. 47th Eur. Microw. Conf. (EuMC), Nuremberg, Germany, pp. 17–20, Oct. 2017.
[24] W.-L. Zhan, J.-X. Xu, X.-L. Zhao, B.-J. Hu, and X. Y. Zhang, “Substrate integrated waveguide multi-channel filtering crossover with extended channel number and controllable frequencies,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 67, no. 12, pp. 2858–2862, Dec. 2020.
[25] K. Zhou and K. Wu, “Wide-stopband substrate-integrated waveguide filtering crossovers with flexibly allocated channel frequencies and bandwidths,” IEEE Trans. Microw. Theory Techn., vol. 69, no. 7, pp. 3264–3274, Jul. 2021.
[26] Q. Liu, D. Zhang, M. Tang, H. Deng, and D. Zhou, “A class of box-like bandpass filters with wide stopband based on new dual-mode rectangular SIW cavities,” IEEE Trans. Microw. Theory Techn., vol. 69, no. 1, pp. 101–110, Jan. 2021.
[27] H. W. Xie, K. Zhou, C. X. Zhou, and W. Wu, "Compact SIW diplexers and dual-band bandpass filter with wide-stopband performances," IEEE Trans. Circuits Systems II: Express Briefs, vol. 67, no. 12, pp. 2933- 2937, Dec. 2020.
[28] P. Chu, L. Guo, L. Zhang, F. Xu, W. Hong, and K. Wu, “Wide stopband substrate integrated waveguide filter implemented by orthogonal Ports’ offset,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 3, pp. 964–970, Mar. 2020.
[29] B. Potelon, J.-F. Favennec, C. Quendo, E. Rius, C. Person, andJ.-C. Bohorquez, “Design of a substrate integrated waveguide (SIW) filterusing a novel topology of coupling,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 9, pp. 596–598, Sep. 2008.
[30] X. Wang, X.-W. Zhu, Z. H. Jiang, Z.-C. Hao, Y.-W. Wu, and W. Hong, “Analysis of eighth-mode substrate-integrated waveguide cavity and flexible filter design,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 7, pp. 2701–2712, Jul. 2019.
[31] P. Kim and Y. Jeong, “Compact and wide stopband substrate integrated waveguide bandpass filter using mixed quarter- and one-eighth modes cavities,” IEEE Microw. Wireless Compon. Lett., vol. 30, no. 1, pp. 16–19, Jan. 2020.
[32] A.-R. Moznebi, K. Afrooz, M. Danaeian, and P. Mousavi, “Four-way filtering power divider using SIW and eighth-mode SIW cavities with ultrawide out-of-band rejection,” IEEE Microw. Wireless Compon. Lett., vol. 29, no. 9, pp. 586–588, Sep. 2019.
[33] J.-S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Application, 1st ed. New York, NY, USA: Wiley, 2001.
指導教授 凃文化(Wen-Hua TU) 審核日期 2024-1-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明