博碩士論文 110522068 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:3.12.71.237
姓名 蔡和蓉(Ho-Jung Tsai)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 用於注意力不足過動症診斷的可解釋多模態融合模型
(ADHD Diagnosis Using Explainable Multimodal Fusion Model)
相關論文
★ 從EEG解釋虛擬實境的干擾對注意力的影響★ 使用虛擬教室遊戲的基於融合的深度學習注意缺陷多動障礙評估方法
★ 利用分層共現網絡評估發展遲緩兒童的精細運動★ 太極大師:基於太極拳的注意力訓練遊戲, 使用動作辨識及平衡分析進行表現評估
★ 比較XRSPACE MANOVA中手勢和控制器互動模式的用戶體驗★ 基於骨架步態藉由機器學習進行臨床老化衰落分類
★ 基於深度學習的虛擬現實腦震盪檢測與融合方法★ 在虛擬現實場景中利用多種生理資料進行高壓駕駛的壓力識別
★ 基於V模型、醫療器材標準和FDA指南的新醫療器材軟體開發流程:以ADHD虛擬實境教室為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 深度學習已經被證明能夠準確地診斷注意力不足過動症(ADHD),但是深度學習一直因為其黑盒子般的不可解釋性而不被信任。幸運的是,隨著可解釋人工智慧的蓬勃發展,這個問題有了解決方案。本研究採用了基於虛擬現實的GO/NOGO 任務,並在其中加入了干擾。在任務期間,會蒐集受測者的眼球追蹤、頭部移動、以及腦電資料。這些資料會被用來訓練一個可解釋多模態融合模型,這個模型除了可以分類患有ADHD的孩童以及正常孩童,也可以產出具有解釋性的熱圖。這個熱圖能夠顯示在腦電資料中特定變量和時間戳的重要性,從而幫助我們分析由模型獲取的型態。從我們對於熱圖的觀察可以發現,模型標示出了常用於分析事件相關電位成分的時間區段。熱圖也表現出干擾對於GO事件和NOGO事件以及ADHD孩童和正常孩童之間的影響是不同的。
摘要(英) Deep learning has been proved to diagnose Attention Deficit/Hyperactivity Disorder (ADHD) accurately, but it has raised concerns about trustworthiness because of the lack of explainability. Fortunately, the development of explainable artificial intelligence (XAI) offers a solution to this problem. In this study, we employed a VR-based GO/NOGO task with distractions, capturing participants′ eye movement, head movement, and electroencephalography (EEG) data. We used the collected data to train an explainable multimodal fusion model. Besides classifying between ADHD and normal children, the proposed model also generates explanation heatmaps. The heatmaps provide the importance of specific variables and timestamps in the EEG data to help us analyze the patterns captured by the model. According to our observations, the model identified specific time intervals that related to specific event-related potentials (ERPs) components. The heatmaps also demonstrate that the impacts of distractions vary between not only the GO and NOGO events but also ADHD and normal children.
關鍵字(中) ★ 注意力不足過動症
★ 可解釋人工智慧
★ 多模態融合
★ 神經行為資料
★ 虛擬實境
關鍵字(英) ★ Attention Deficit/Hyperactivity Disorder (ADHD)
★ Explainable Artificial Intelligence (XAI)
★ multimodal fusion
★ neurobehavioral data
★ Virtual Reality (VR)
論文目次 摘要.................................................................................................................I
Abstract.......................................................................................................... II
致謝..............................................................................................................III
Table of Contents..........................................................................................IV
List of Figures ............................................................................................... V
List of Tables................................................................................................VI
1. Introduction.......................................................................................... 1
2. Related Works...................................................................................... 5
3. Methodology ...................................................................................... 10
4. Results................................................................................................ 19
5. Discussions......................................................................................... 25
6. Conclusion and Future Works............................................................ 30
Reference...................................................................................................... 32
參考文獻 [1] S. R. Pliszka, "Patterns of psychiatric comorbidity with attention-deficit/hyperactivity disorder," Child and adolescent psychiatric clinics of North America, vol. 9, no. 3, pp. 525-540, 2000.
[2] J. Johnson, S. Morris, and S. George, "Misdiagnosis and missed diagnosis of adult attention-deficit hyperactivity disorder," BJPsych Advances, vol. 27, no. 1, pp. 60-61, 2021.
[3] A. P. Association, Diagnostic and statistical manual of mental disorders (5th ed., text rev.). 2022.
[4] F. Mowlem, J. Agnew-Blais, E. Taylor, and P. Asherson, "Do different factors influence whether girls versus boys meet ADHD diagnostic criteria? Sex differences among children with high ADHD symptoms," Psychiatry Research, vol. 272, pp. 765-773, 2019.
[5] H. W. Loh, C. P. Ooi, P. D. Barua, E. E. Palmer, F. Molinari, and U. Acharya, "Automated detection of ADHD: Current trends and future perspective," Computers in Biology and Medicine, p. 105525, 2022.
[6] L.-J. Wang et al., "Validity of visual and auditory attention tests for detecting ADHD," Journal of attention disorders, vol. 25, no. 8, pp. 1160-1169, 2021.
[7] G. Yong-Liang, P. Robaey, F. Karayanidis, M. Bourassa, G. Pelletier, and G. Geoffroy, "ERPs and behavioral inhibition in a Go/No-go task in children with attention-deficit hyperactivity disorder," Brain and Cognition, 2000.
[8] J. R. Wiersema and H. Roeyers, "ERP correlates of effortful control in children with varying levels of ADHD symptoms," Journal of abnormal child psychology, vol. 37, pp. 327-336, 2009.
[9] M. C. Edwards, E. S. Gardner, J. J. Chelonis, E. G. Schulz, R. A. Flake, and P. F. Diaz, "Estimates of the validity and utility of the Conners’ Continuous Performance Test in the assessment of inattentive and/or hyperactive-impulsive behaviors in children," Journal of abnormal child psychology, vol. 35, pp. 393-404, 2007.
[10] A. Tekok-Kilic, J. L. Shucard, and D. W. Shucard, "Stimulus modality and Go/NoGo effects on P3 during parallel visual and auditory continuous performance tasks," Psychophysiology, vol. 38, no. 3, pp. 578-589, 2001.
[11] Y. Kaga et al., "Executive dysfunction in medication-naïve children with ADHD: A multi-modal fNIRS and EEG study," Brain and Development, vol. 42, no. 8, pp. 555-563, 2020.
[12] M.-P. Deiber et al., "Linking alpha oscillations, attention and inhibitory control in adult ADHD with EEG neurofeedback," NeuroImage: Clinical, vol. 25, p. 102145, 2020.
[13] S. Khanna and W. Das, "A novel application for the efficient and accessible diagnosis of ADHD using machine learning," in 2020 IEEE/ITU International Conference on Artificial Intelligence for Good (AI4G), 2020: IEEE, pp. 51-54.
[14] J.-H. Huang and Y.-S. Chan, "Saccade eye movement in children with attention deficit hyperactivity disorder," Nordic journal of psychiatry, vol. 74, no. 1, pp. 16-22, 2020.
[15] U. Díaz-Orueta, C. Garcia-López, N. Crespo-Eguílaz, R. Sánchez-Carpintero, G. Climent, and J. Narbona, "AULA virtual reality test as an attention measure: Convergent validity with Conners’ Continuous Performance Test," Child Neuropsychology, vol. 20, no. 3, pp. 328-342, 2014.
[16] P. Nolin, A. Stipanicic, M. Henry, Y. Lachapelle, D. Lussier-Desrochers, and P. Allain, "ClinicaVR: Classroom-CPT: A virtual reality tool for assessing attention and inhibition in children and adolescents," Computers in Human Behavior, vol. 59, pp. 327-333, 2016.
[17] A. Mühlberger et al., "The influence of methylphenidate on hyperactivity and attention deficits in children with ADHD: a virtual classroom test," Journal of attention disorders, vol. 24, no. 2, pp. 277-289, 2020.
[18] L. Dubreuil-Vall, G. Ruffini, and J. A. Camprodon, "Deep learning convolutional neural networks discriminate adult ADHD from healthy individuals on the basis of event-related spectral EEG," Frontiers in neuroscience, vol. 14, p. 251, 2020.
[19] M. Bakhtyari and S. Mirzaei, "ADHD detection using dynamic connectivity patterns of EEG data and ConvLSTM with attention framework," Biomedical Signal Processing and Control, vol. 76, p. 103708, 2022.
[20] V. Khullar, K. Salgotra, H. P. Singh, and D. P. Sharma, "Deep learning-based binary classification of ADHD using resting state MR images," Augmented Human Research, vol. 6, no. 1, p. 5, 2021.
[21] O. Attallah, M. A. Sharkas, and H. Gadelkarim, "Deep learning techniques for automatic detection of embryonic neurodevelopmental disorders," Diagnostics, vol. 10, no. 1, p. 27, 2020.
[22] S. Liu, L. Zhao, J. Zhao, B. Li, and S.-H. Wang, "Attention deficit/hyperactivity disorder Classification based on deep spatio-temporal features of functional Magnetic Resonance Imaging," Biomedical Signal Processing and Control, vol. 71, p. 103239, 2022.
[23] W.-L. Zheng, W. Liu, Y. Lu, B.-L. Lu, and A. Cichocki, "Emotionmeter: A multimodal framework for recognizing human emotions," IEEE transactions on cybernetics, vol. 49, no. 3, pp. 1110-1122, 2018.
[24] G. Antoniou, E. Papadakis, and G. Baryannis, "Mental health diagnosis: a case for explainable artificial intelligence," International Journal on Artificial Intelligence Tools, vol. 31, no. 03, p. 2241003, 2022.
[25] G. Amrani, A. Adadi, M. Berrada, Z. Souirti, and S. Boujraf, "EEG signal analysis using deep learning: A systematic literature review," in 2021 Fifth International Conference On Intelligent Computing in Data Sciences (ICDS), 2021: IEEE, pp. 1-8.
[26] A. Jacovi, "Trends in Explainable AI (XAI) Literature," arXiv preprint arXiv:2301.05433, 2023.
[27] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, "Grad-cam: Visual explanations from deep networks via gradient-based localization," in Proceedings of the IEEE international conference on computer vision, 2017, pp. 618-626.
[28] K. Konrad and S. B. Eickhoff, "Is the ADHD brain wired differently? A review on structural and functional connectivity in attention deficit hyperactivity disorder," Human brain mapping, vol. 31, no. 6, pp. 904-916, 2010.
[29] T. G. C. Dias, C. Kieling, A. S. Graeff-Martins, T. S. Moriyama, L. A. Rohde, and G. V. Polanczyk, "Developments and challenges in the diagnosis and treatment of ADHD," Brazilian Journal of Psychiatry, vol. 35, pp. S40-S50, 2013.
[30] A. Manoli, S. P. Liversedge, E. J. Sonuga-Barke, and J. A. Hadwin, "The differential effect of anxiety and ADHD symptoms on inhibitory control and sustained attention for threat stimuli: A Go/No-Go eye-movement study," Journal of Attention Disorders, vol. 25, no. 13, pp. 1919-1930, 2021.
[31] K.-F. Zhang, S.-C. Yeh, E. H.-K. Wu, X. Xu, H.-J. Tsai, and C.-C. Chen, "Fusion of Multi-Task Neuro-Sensing Data to Enhance the Detection of Attention-Deficit/Hyperactivity Disorder," “unpublished”.
[32] C.-C. Chen, E. H.-K. Wu, Y.-Q. Chen, H.-J. Tsai, C.-R. Chung, and S.-C. Yeh, "Neuronal Correlates of Task Irrelevant Distractions Enhance the Detection of Attention Deficit/Hyperactivity Disorder," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 31, pp. 1302-1310, 2023.
[33] S.-C. Yeh et al., "A virtual-reality system integrated with neuro-behavior sensing for attention-deficit/hyperactivity disorder intelligent assessment," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 28, no. 9, pp. 1899-1907, 2020.
[34] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770-778.
[35] C. Uyulan, T. T. Erguzel, O. Turk, S. Farhad, B. Metin, and N. Tarhan, "A class activation map-based interpretable transfer learning model for automated detection of ADHD from fMRI data," Clinical EEG and Neuroscience, vol. 54, no. 2, pp. 151-159, 2023.
[36] Y. Qi, H. Lin, Y. Li, and J. Chen, "Parameter-free attention in fmri decoding," IEEE Access, vol. 9, pp. 48704-48712, 2021.
[37] I. A. Ahmed et al., "Eye tracking-based diagnosis and early detection of autism spectrum disorder using machine learning and deep learning techniques," Electronics, vol. 11, no. 4, p. 530, 2022.
[38] L. N. B. Singson, M. T. U. R. Sanchez, and J. F. Villaverde, "Emotion recognition using short-term analysis of heart rate variability and ResNet architecture," in 2021 13th International Conference on Computer and Automation Engineering (ICCAE), 2021: IEEE, pp. 15-18.
[39] M. Hammad, P. Pławiak, K. Wang, and U. R. Acharya, "ResNet‐Attention model for human authentication using ECG signals," Expert Systems, vol. 38, no. 6, p. e12547, 2021.
[40] C. Wang et al., "Towards high-accuracy classifying attention-deficit/hyperactivity disorders using CNN-LSTM model," Journal of Neural Engineering, vol. 19, no. 4, p. 046015, 2022.
[41] M. A. Rahman, D. J. Brown, N. Shopland, A. Burton, and M. Mahmud, "Explainable multimodal machine learning for engagement analysis by continuous performance test," in Universal Access in Human-Computer Interaction. User and Context Diversity: 16th International Conference, UAHCI 2022, Held as Part of the 24th HCI International Conference, HCII 2022, Virtual Event, June 26–July 1, 2022, Proceedings, Part II, 2022: Springer, pp. 386-399.
[42] K. Fauvel, T. Lin, V. Masson, É. Fromont, and A. Termier, "Xcm: An explainable convolutional neural network for multivariate time series classification," Mathematics, vol. 9, no. 23, p. 3137, 2021.
[43] H. Chen, Y. Song, and X. Li, "Use of deep learning to detect personalized spatial-frequency abnormalities in EEGs of children with ADHD," Journal of neural engineering, vol. 16, no. 6, p. 066046, 2019.
[44] S. Haykin, Neural networks: a comprehensive foundation. Prentice Hall PTR, 1998.
[45] T. Dozat, "Incorporating nesterov momentum into adam," 2016.
指導教授 葉士青 吳曉光(Shih-Ching Yeh Hsiang-Kuang Wu) 審核日期 2023-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明