博碩士論文 110522081 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:2 、訪客IP:3.140.198.43
姓名 洪紫瑄(Tzu-Hsuan Hung)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 衛星網路之基於空間多樣性的前導訊號設計
(Spatial Diversity Based Preamble Design in Non-Terrestrial Networks)
相關論文
★ 基於OP-TEE的可信應用程式軟體生態系統★ 在低軌道衛星無線通訊中的CSI預測方法
★ 為多流量低軌道衛星系統提出的動態換手策略★ 基於Trustzone的智慧型設備語音隱私保護系統
★ 一種減輕LEO衛星網路干擾的方案★ TruzGPS:基於TrustZone的位置隱私權保護系統
★ 衛星地面整合網路之隨機接入前導訊號設計與偵測★ SatPolicy: 基於Trustzone的衛星政策執行系統
★ TruzMalloc: 基於TrustZone 的隱私資料保 護系統★ 衛星地面網路中基於物理層安全的CSI保護方法
★ 低軌道衛星地面整合網路之安全非正交多重存取傳輸★ 低軌道衛星地面網路中的DRX機制設計
★ 衛星地面整合網路之基於集合系統的前導訊號設計★ 基於省電的低軌衛星網路路由演算法
★ 衛星上可重組化計算之安全FPGA動態部分可重組架構★ TrustCS: 基於 Trusted Firmware-M 的安全 CubeSat 韌體更新機制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 由於低地球軌道衛星環境具有長傳播延遲和高移動性等特點,對於
前導設計需要考慮時序提前和載波頻率偏移。為了處理頻率偏移對時
序估計造成的影響,前導訊號廣泛採用具有多個根的 Zadoff-Chu (ZC)
序列。然而,這樣的前導訊號會受到非正交干擾的影響。我們採用空
間多樣性來設計區域特定的前導訊號的樣式以有效緩解 NOI,並且能
夠在大的頻率偏移環境下進行時序估計。我們提出的前導訊號設計可
以達到更高的接入率,並且在頻率偏移較大或多個用戶同時訪問的情
況下也能保持良好效果。
摘要(英) Due to the features of low earth orbit (LEO) satellite environment, such as long propagation delays and high mobility, the preamble design needs to consider the large timing advance and carrier frequency offset (CFO). To handle the adverse impact of CFO on the timing detection, preambles constructed using Zadoff-Chu (ZC) sequence with multiple roots are widely considered. However, such preambles suffer from the non-orthogonal interference (NOI). We adopt spatial diversity to develop region specific preamble patterns to effectively mitigate NOI and estimate timing advance under the large CFO environment. Our proposed preamble design achieves high access rate, even in scenarios with large CFO or when multiple users access simultaneously.
關鍵字(中) ★ 衛星通訊
★ 隨機接入
★ 前導訊號設計
★ 都卜勒偏移
★ 上行鏈路
★ 分散式
關鍵字(英) ★ Satellite Communication
★ Random access
★ Preamble Design
★ Doppler shift
★ Uplink
★ Distributed
論文目次 中文摘要 i
Abstract ii
致謝 iii
Contents iv
List of Figures vi
List of Tables viii
1 Introduction 1
2 Related Work 3
2.1 Preamble design with single root . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Preamble design with multiple root . . . . . . . . . . . . . . . . . . . . . 4
3 System Model 6
3.1 System description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Concatenating K sequences . . . . . . . . . . . . . . . . . . . . . . . . 7
4 Methodology 8
4.1 Proposed Preamble Design . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.1.1 Preamble pattern . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1.2 Cyclic shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
iv4.2 Preamble Detection Mechanism . . . . . . . . . . . . . . . . . . . . . . 15
4.2.1 Preamble Search . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 TA Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3.1 CFO and Concatenating Number . . . . . . . . . . . . . . . . . . 17
5 Simulation 18
5.1 Impact of SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Impact of Normalized CFO . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3 Impact of Multi-user . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.4 Impact of Spatial Diversity . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.5 Impact of Root Pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6 Conclusion 26
Bibliography 27
參考文獻 [1] Solutions for NR to support non-terrestrial networks (NTN), 3GPP TS 38.821 V16.1.0, May. 2021.
[2] NR; Physical channels and modulation, 3GPP TS 38.211 V17.1.0, Mar. 2022.
[3] RACH Procedure and UL Timing Control for NTN, Qualcomm, document R1-1912956, TSGRAN WG1 #99, Nov. 2019.
[4] L. Zhen, H. Qin, B. Song, R. Ding, X. Du, and M. Guizani, “Random access preamble design and detection for mobile satellite communication systems,” IEEE Journal on Selected Areas in Communications, vol. 36, no. 2, pp. 280–291, Feb. 2018.
[5] L. Zhen, A. K. Bashir, K. Yu, Y. D. Al-Otaibi, C. H. Foh, and P. Xiao, “Energyefficient random access for leo satellite-assisted 6g internet of remote things,” IEEE Internet of Things Journal, vol. 8, no. 7, pp. 5114–5128, Oct. 2020.
[6] G. Cui, Y. He, P. Li, and W. Wang, “Enhanced timing advanced estimation with symmetric zadoff-chu sequences for satellite systems,” IEEE Communications Letters, vol. 19, no. 5, pp. 747–750, Mar. 2015.
[7] T. Sun, L. Zhen, G. Lu, and K. Yu, “Random access preamble design and detection for 5g remote health via satellite communications,” in 2020 IEEE Wireless Communications and Networking Conference Workshops (WCNCW). IEEE, 2020, pp. 1–6.
[8] Evaluations of 2-Rooted PRACH Preamble, Qualcomm, document R1-1911113, TSGRAN WG1 #98bis, Oct. 2019. 27
[9] L. Zhen, H. Qin, Q. Zhang, Z. Chu, G. Lu, J. Jiang, and M. Guizani, “Optimal preamble design in spatial group-based random access for satellite-m2m communications,” IEEE Wireless Communications Letters, vol. 8, no. 3, pp. 953–956, 2019.
[10] T. Kim, I. Bang, and D. K. Sung, “An enhanced prach preamble detector for cellular iot communications,” IEEE Communications Letters, vol. 21, no. 12, pp. 2678–2681, 2017.
[11] C. Zhang, W. Cao, Z. Yang, K. Tian, and N. Zhang, “Random access preamble design for large frequency shift in satellite communication,” IEEE 2nd 5G World Forum (5GWF), pp. 659–664, Nov. 2019.
指導教授 張貴雲(Guey-Yun Chang) 審核日期 2023-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明