博碩士論文 110522086 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:3.144.154.208
姓名 康致瑋(Chih-Wei Kang)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 基於骨架步態藉由機器學習進行臨床老化衰落分類
(Skelton-Gait based Clinical Frailty Assessment using Hybrid Ensemble ML Model)
相關論文
★ 從EEG解釋虛擬實境的干擾對注意力的影響★ 使用虛擬教室遊戲的基於融合的深度學習注意缺陷多動障礙評估方法
★ 利用分層共現網絡評估發展遲緩兒童的精細運動★ 太極大師:基於太極拳的注意力訓練遊戲, 使用動作辨識及平衡分析進行表現評估
★ 比較XRSPACE MANOVA中手勢和控制器互動模式的用戶體驗★ 用於注意力不足過動症診斷的可解釋多模態融合模型
★ 基於深度學習的虛擬現實腦震盪檢測與融合方法★ 在虛擬現實場景中利用多種生理資料進行高壓駕駛的壓力識別
★ 基於V模型、醫療器材標準和FDA指南的新醫療器材軟體開發流程:以ADHD虛擬實境教室為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 臨床衰弱,也稱為羸弱綜合症,是一種常見於老年人的醫學狀況,表現為身體、心理和社交功能的下降。它是由於年齡相關的生理變化、慢性疾病和環境因素等多種因素相互作用的結果。臨床上的衰弱個體對壓力因素更加脆弱,並且有更高的跌倒、住院、殘疾和死亡風險。因此要是可以提早發現衰弱趨勢,即可提早應對,減少未來負擔。隨著圖像辨識與骨架追蹤演算法的發展,許多基於骨架的病理步態分類方法近年來已被提出。然而,這些方法少有用來對人體衰弱進行分類,沒有辦法取代複雜的臨床衰落量表。本文通過基於LSTM分類器和全身骨架數據找到的時序性動作特徵,對Clinical Frailty Scale中的四個衰弱等級進行4分類,f1-score為73%,另外加上圖像辨識針對環境進行背景物品特徵提供,可以使分類準確度增加到93%。本研究表明,所提出的方法可以用於支持醫療和臨床決策。且符合AIoMT的需求,可以更簡易的推廣於各處。
摘要(英) Clinical frailty, also known as frailty syndrome, is a common medical condition among the elderly, characterized by a decline in physical, psychological, and social functioning. It is the result of multiple factors such as age-related physiological changes, chronic diseases, and environmental factors. Clinically frail individuals are more vulnerable to stressors and have a higher risk of falls, hospitalization, disability, and mortality. Early detection of frailty trends can enable proactive interventions and reduce future burdens.
With the advancement of image recognition and skeleton tracking algorithms, several skeleton-based pathological gait classification methods have been proposed in recent years. However, these methods are rarely applied to classify human frailty and cannot replace complex clinical frailty scales. In this paper, by utilizing an LSTM classifier and temporal motion features extracted from full-body skeleton data, we perform a 4-class classification of the four frailty levels in the Clinical Frailty Scale, achieving an f1-score of 73%. By incorporating image recognition to provide background object features related to the environment, the classification accuracy is increased to 93%.
This study demonstrates that the proposed method can support medical and clinical decision-making and meets the requirements of AIoMT, making it easier to generalize across various settings.
關鍵字(中) ★ 步態
★ 臨床衰落
★ 醫療物聯網
★ 圖像辨識
關鍵字(英) ★ Gait
★ Clinical Frailty
★ AIoMT
★ image recognition
論文目次 摘要 v
Abstract vii
誌謝 ix
目錄 xi
圖目錄 xiii
表目錄 xv
使用符號與定義 xvii
一、Introduction 1
二、Related work 5
三、method 11
3.1 Experiment Setup 12
3.2 Data Preprocessing 15
3.3 Model Structure 16
3.4 System design 19
四、Result 21
五、Discussion 25
六、Conclusion 27
七、Future work 29
參考文獻 31
參考文獻 [1] E. Dent, P. Kowal, and E. Hoogendijk, “Frailty measurement in research and clinical
practice: A review,” European Journal of Internal Medicine, vol. 31, pp. 3–10, 03
2016.
[2] E. Topinková, “Aging, Disability and Frailty,” Annals of Nutrition and Metabolism,
vol. 52, pp. 6–11, 03 2008.
[3] T. Strandberg, K. Pitkälä, and R. Tilvis, “Frailty in older people,” European Geriatric
Medicine, vol. 2, no. 6, pp. 344–355, 2011.
[4] “American college of sports medicine position stand. exercise and physical activity
for older adults,” Med Sci Sports Exerc, vol. 30, pp. 992–1008, June 1998.
[5] C.-C. Chen, E. H.-K. Wu, Y.-Q. Chen, H.-J. Tsai, C.-R. Chung, and S.-C. Yeh,
“Neuronal correlates of task irrelevant distractions enhance the detection of attention
deficit/hyperactivity disorder,” IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 31, pp. 1302–1310, 2023.
[6] C. Chih-Hsuan, C.-R. Chung, H.-Y. Yang, S.-C. Yeh, E. H.-K. Wu, and H.-J. Ting,
“Virtual reality-based supermarket for intellectual disability classification, diagnostics
and assessment,” IEEE Transactions on Learning Technologies, pp. 1–10, 2023.
[7] S. Vishnu, S. J. Ramson, and R. Jegan, “Internet of medical things (iomt) - an
overview,” in 2020 5th International Conference on Devices, Circuits and Systems
(ICDCS), pp. 101–104, 2020.
[8] A. Ghubaish, T. Salman, M. Zolanvari, D. Unal, A. Al-Ali, and R. Jain, “Recent
advances in the internet-of-medical-things (iomt) systems security,” IEEE Internet
of Things Journal, vol. 8, no. 11, pp. 8707–8718, 2021.
[9] F. Majeed, M. Nazir, and J. Schneider, “Isa: Internet of medical things (iomt) in
smart healthcare and its applications: A review,” in 2023 3rd International Conference
on Artificial Intelligence (ICAI), pp. 129–135, 2023.
[10] C.-C. Wei, C.-W. Chen, and L.-C. Hung, “Establish a smart healthcare system with
aiot for chinese medicine,” in 2022 10th International Conference on Orange Technology
(ICOT), pp. 1–5, 2022.
[11] C.-R. Chung, M.-C. Su, S.-H. Lee, E. H.-K. Wu, L.-H. Tang, and S.-C. Yeh, “An intelligent
motor assessment method utilizing a bi-lateral virtual-reality task for stroke
rehabilitation on upper extremity,” IEEE Journal of Translational Engineering in
Health and Medicine, vol. 10, pp. 1–11, 2022.
[12] S.-H. Lee, J. Cui, L. Liu, M.-C. Su, L. Zheng, and S.-C. Yeh, “An evidence-based
intelligent method for upper-limb motor assessment via a vr training system on stroke
rehabilitation,” IEEE Access, vol. 9, pp. 65871–65881, 2021.
[13] M. Eskandari, S. Parvaneh, H. Ehsani, M. Fain, and N. Toosizadeh, “Frailty identification
using heart rate dynamics: A deep learning approach,” IEEE Journal of
Biomedical and Health Informatics, vol. 26, no. 7, pp. 3409–3417, 2022.
[14] Y. N. Panhwar, F. Naghdy, D. Stirling, G. Naghdy, and J. Potter, “Quantitative
frailty assessment using activity of daily living (adl),” in 2018 IEEE 18th International
Conference on Bioinformatics and Bioengineering (BIBE), pp. 269–272, 2018.
[15] M. Abbas, D. Somme, and R. L. Bouquin Jeannès, “Machine learning-based physical
activity tracking with a view to frailty analysis,” in 2020 42nd Annual International
Conference of the IEEE Engineering in Medicine Biology Society (EMBC), pp. 3917–
3920, 2020.
[16] A. Sabo, S. Mehdizadeh, A. Iaboni, and B. Taati, “Prediction of parkinsonian gait in
older adults with dementia using joint trajectories and gait features from 2d video,”
in 2021 43rd Annual International Conference of the IEEE Engineering in Medicine
Biology Society (EMBC), pp. 5700–5703, 2021.
[17] K. Jun, Y. Lee, S. Lee, D.-W. Lee, and M. S. Kim, “Pathological gait classification
using kinect v2 and gated recurrent neural networks,” IEEE Access, vol. 8,
pp. 139881–139891, 2020.
[18] R. Mc Ardle, S. Del Din, P. Donaghy, B. Galna, A. J. Thomas, and L. Rochester,
“The impact of environment on gait assessment: Considerations from real-world gait
analysis in dementia subtypes,” Sensors, vol. 21, no. 3, 2021.
[19] H. Kingetsu, T. Konno, S. Awai, D. Fukuda, and T. Sonoda, “Video-based fall
risk detection system for the elderly,” in 2019 IEEE 1st Global Conference on Life
Sciences and Technologies (LifeTech), pp. 148–149, 2019.
[20] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A largescale
hierarchical image database,” in 2009 IEEE Conference on Computer Vision
and Pattern Recognition, pp. 248–255, 2009.
[21] L. Wang, S. Guo, W. Huang, and Y. Qiao, “Places205-vggnet models for scene
recognition,” CoRR, vol. abs/1508.01667, 2015.
[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
CoRR, vol. abs/1512.03385, 2015.
[23] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich, “Going deeper with convolutions,” CoRR, vol. abs/
1409.4842, 2014.
[24] M. A. Morid, A. Borjali, and G. Del Fiol, “A scoping review of transfer learning
research on medical image analysis using imagenet,” Computers in Biology and
Medicine, vol. 128, p. 104115, 2021.
[25] S. Church, E. Rogers, K. Rockwood, and O. Theou, “A scoping review of the clinical
frailty scale,” BMC Geriatr., vol. 20, p. 393, Oct. 2020.
[26] Y.-C. Chou, H.-H. Tsou, D.-C. D. Chan, C.-J. Wen, F.-P. Lu, K.-P. Lin, M.-C.
Wu, Y.-M. Chen, and J.-H. Chen, “Validation of clinical frailty scale in chinese
translation,” BMC Geriatr., vol. 22, p. 604, July 2022.
[27] G. Cicirelli, D. Impedovo, V. Dentamaro, R. Marani, G. Pirlo, and T. R. D’Orazio,
“Human gait analysis in neurodegenerative diseases: A review,” IEEE Journal of
Biomedical and Health Informatics, vol. 26, no. 1, pp. 229–242, 2022.
[28] H. Lu, S. Xu, S. Zhao, X. Hu, R. Ma, and B. Hu, “Epic: Emotion perception by
spatio-temporal interaction context of gait,” IEEE Journal of Biomedical and Health
Informatics, pp. 1–10, 2022.
[29] D. Jung, J. Kim, M. Kim, C. W. Won, and K.-R. Mun, “Classifying the risk of
cognitive impairment using sequential gait characteristics and long short-term memory
networks,” IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 10,
pp. 4029–4040, 2021.
[30] X. Wu, X. Chen, Y. Duan, S. Xu, N. Cheng, and N. An, “A study on gait-based
parkinson’s disease detection using a force sensitive platform,” in 2017 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM), pp. 2330–2332,
2017.
[31] D. Jung, J. Kim, M. Kim, C. W. Won, and K.-R. Mun, “Frailty assessment using
temporal gait characteristics and a long short-term memory network,” IEEE Journal
of Biomedical and Health Informatics, vol. 25, no. 9, pp. 3649–3658, 2021.
指導教授 葉士青 吳曉光(Shih-Ching Yeh Eric Hsiao-Kuang Wu) 審核日期 2023-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明