博碩士論文 110522153 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.133.159.224
姓名 謝兆峰(Chao-Feng Hsieh)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 基於深度學習的虛擬現實腦震盪檢測與融合方法
(Deep-Learning-based Virtual Reality Concussion Detection with Fusion Method)
相關論文
★ 從EEG解釋虛擬實境的干擾對注意力的影響★ 使用虛擬教室遊戲的基於融合的深度學習注意缺陷多動障礙評估方法
★ 利用分層共現網絡評估發展遲緩兒童的精細運動★ 太極大師:基於太極拳的注意力訓練遊戲, 使用動作辨識及平衡分析進行表現評估
★ 比較XRSPACE MANOVA中手勢和控制器互動模式的用戶體驗★ 基於骨架步態藉由機器學習進行臨床老化衰落分類
★ 用於注意力不足過動症診斷的可解釋多模態融合模型★ 在虛擬現實場景中利用多種生理資料進行高壓駕駛的壓力識別
★ 基於V模型、醫療器材標準和FDA指南的新醫療器材軟體開發流程:以ADHD虛擬實境教室為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在職業球賽中,碰撞和衝突是不可避免的,這很容易導致創傷性腦損
傷,甚至危及生命。這些腦震盪症狀可能會嚴重影響運動員的職業生涯
和發展,而後遺症可能導致永久性損傷。因此,一種即時且有效的測試
或檢測方法是必要的工具。過去大多數的測試方法相對主觀,通常需要
運動員自行報告,這可能易於操縱。過去可以使用視覺誘發電位(VEP)
測試人腦的視覺功能,但需要一個安靜和無干擾的環境來收集數據。腦
震盪患者通常在某些腦部區域有頭部受傷。隨著虛擬現實(VR)和機器
學習(ML)的快速發展,我們利用VR 頭戴式設備創造出一個沉浸式環
境,這個環境可以創造一個無干擾的封閉環境,以更可靠地從患者收集
數據。多模態融合方法可以檢測腦震盪症狀並對應不同的神經功能進行
全面評估,使用腦電圖(EEG)和眼動追蹤傳感器。最近,機器學習和
深度學習方法在發現腦震盪症狀方面應用較少,因此我們進一步研究這
些先進技術。我們提出了一種新穎的腦震盪檢測系統,結果在我們的模
擬數據集中實現了0.95 的準確率。
摘要(英) In professional ball games, collisions and conflicts are inevitable, which
can easily cause traumatic brain injuries and even life-threatening injuries.
These concussion symptoms can seriously impact a player’s career and
development, and the sequelae can cause permanent damage. Therefore,
an immediate and effective testing or detection method is a necessary tool.
Most of the testing methods in the past were relatively subjective, and they
usually need a self-report for players themselves, which may cause easily
be manipulated. In the past, a visual evoked potential (VEP) can be used
to test the visual function of the human brain but needed a silent and
interference-free environment to collect data. Concussion patients often
have head injuries in some brain sections. With the rapid development of
Virtual Reality (VR) and Machine Learning (ML), we utilize a VR headset
to create an immersive environment that creates an enclosed environment
that is interference-free in order to collect data more reliably from patients.
Multi-modal fusion methods can detect concussion symptoms and make a
comprehensive assessment for different brain sections corresponding with
different neurological functions with EEG and eye-tracking sensors. Recently,
ML and DL methods are less applied to find concussion symptoms,
then we further investigate these with advanced techniques. We propose a novel concussion detection system and the result can achieve an accuracy
of 0.95 in our simulation dataset.
關鍵字(中) ★ 腦震盪
★ 機器學習
★ 融合方法
★ 虛擬現實
★ 輕度創傷性腦損傷
★ 穩態視覺誘發電位
★ 眼動追蹤
關鍵字(英) ★ Concussion
★ Machine Learning
★ Fusion strategy
★ Virtual Reality
★ Mild Traumatic Brain Injury(mTBI)
★ SSVEP
★ Eye Tracking
論文目次 摘要………………………………………………………………………………………………….iii
Abstract ……………………………………………………………………………………….v
誌謝……………………………………………………………………………………………..vii
目錄………………………………………………………………………………………………ix
圖目錄…………………………………………………………………………………………..xi
表目錄…………………………………………………………………………………………xiii
使用符號與定義…………………………………………………………………………..xv
一、Introduction ………………………………………………………………………..1
二、Related work ………………………………………………………………………7
三、Scenario …………………………………………………………………….………11
四、Materials and Methods …………………………………………..………13
4.0.1 System Implementation............................................................13
4.0.2 Hardware ......................................................................................18
4.0.3 Participants..................................................................................18
4.0.4 EEG Data Preprocessing .........................................................19
4.0.5 Eye Data Preprocessing...........................................................21
4.0.6 System Design.............................................................................22
五、Result………………………………………..............................................25
六、Conclusion..............................................................................31
參考文獻.............................................. .............................................33
參考文獻 [1] Fong, D., Cohen, A., Boughton, P., Raftos, P., Herrera, J. E., Simon, N. G., &
Putrino, D. (2020). Steady-State Visual-Evoked Potentials as a Biomarker for Concussion:
A Pilot Study. Frontiers in neuroscience, 14, 171. https://doi.org/10.3389/
fnins.2020.00171
[2] Ryan, L. M., & Warden, D. L. (2003a). Post-concussion syndrome. International Review
of Psychiatry, 15(4), 310–316.https://doi.org/10.1080/09540260310001606692
[3] Norcia, A. M., Appelbaum, L. G., Ales, J. M., Cottereau, B. R., & Rossion, B.
(2015). The steady-state visual evoked potential in vision research: A review. Journal
of vision, 15(6), 4. https://doi.org/10.1167/15.6.4
[4] John K Yue, MD, Ryan R L Phelps, BA, Ankush Chandra, MS, Ethan A Winkler,
MD, PhD, Geoffrey T Manley, MD, PhD, Mitchel S Berger, MD, Sideline Concussion
Assessment: The Current State of the Art, Neurosurgery, Volume 87, Issue 3,
September 2020, Pages 466–475, https://doi.org/10.1093/neuros/nyaa022
[5] American Clinical Neurophysiology Society. Guideline 9B: Guidelines on visual
evoked potentials. J Clin Neurophysiol. 2006 Apr;23(2):138-56. doi:
10.1097/00004691-200604000-00011. Erratum in: J Clin Neurophysiol. 2006
Aug;23(4):preceding 281. PMID: 16612231.
[6] Yadav NK, Ciuffreda KJ. Objective assessment of visual attention in mild traumatic
brain injury (mTBI) using visual-evoked potentials (VEP). Brain Inj. 2015;29(3):352-
65. doi: 10.3109/02699052.2014.979229. Epub 2014 Nov 21. PMID: 25415539.
[7] Poltavski D, Lederer P, Cox LK. Visually Evoked Potential Markers of Concussion
History in Patients with Convergence Insufficiency. Optom Vis Sci. 2017
Jul;94(7):742-750. doi: 10.1097/OPX.0000000000001094. PMID: 28609417; PMCID:
PMC5507818
[8] A. Sutandi, N. Dhillon, M. Lim, H. Cao and D. Si, ”Detection of Traumatic Brain
Injury Using Single Channel Electroencephalogram in Mice,” 2020 IEEE Signal Processing
in Medicine and Biology Symposium (SPMB), 2020, pp. 1-8, doi: 10.1109/
SPMB50085.2020.9353651.
[9] Boshra, R., Ruiter, K.I., DeMatteo, C. et al. Neurophysiological Correlates of Concussion:
Deep Learning for Clinical Assessment. Sci Rep 9, 17341 (2019). https://
doi.org/10.1038/s41598-019-53751-9
[10] Thanjavur, K., Babul, A., Foran, B. et al. Recurrent neural network-based acute
concussion classifier using raw resting-state EEG data. Sci Rep 11, 12353 (2021).
https://doi.org/10.1038/s41598-021-91614-4
[11] Howell, D. R., Brilliant, A. N., Storey, E. P., Podolak, O. E., Meehan, W. P.,
and Master, C. L. (2018). Objective eye tracking deficits following concussion
for youth seen in a sports medicine setting. J. Child Neurol. 33, 794–800. doi:
10.1177/0883073818789320
[12] Land, M., and Tatler, B. (2009). Looking and Acting Vision and Eye Movements
in Natural Behavior. Oxford: Oxford University Press, doi: 10.1093/acprof:oso/
9780198570943.001.0001
[13] Leigh, R. J., and Zee, D. S. (2015). The Neurology of Eye Movements. Oxford:
Oxford University Press, doi: 10.1093/med/9780199969289.001.0001
[14] Lange, B., Hunfalvay, M., Murray, N., Roberts, C. M., and Bolte, T. (2018). Reliability
of computerized eye-tracking reaction time tests in non-athletes, athletes, and
individuals with traumatic brain injury. Optom Vis. Perf. 6, 165–180.
[15] Johnson B, Zhang K, Hallett M, Slobounov S. Functional neuroimaging of acute oculomotor
deficits in concussed athletes. Brain Imaging Behav. 9(3), 564–573 (2015).
[16] Uzma Samadani, Robert Ritlop, Marleen Reyes, Elena Nehrbass, Meng Li, Elizabeth
Lamm, Julia Schneider, David Shimunov, Maria Sava, Radek Kolecki, Paige
Burris, Lindsey Altomare, Talha Mehmood, Theodore Smith, Jason H. Huang,
Christopher McStay, S. Rob Todd, Meng Qian, Douglas Kondziolka, Stephen Wall,
and Paul Huang.Journal of Neurotrauma.Apr 2015.548-556. http://doi.org/10.1089/
neu.2014.3687
[17] Hunfalvay M, Murray NP, Roberts C-M, Tyagi A, Barclay KW and Carrick FR
(2020) Oculomotor Behavior as a Biomarker for Differentiating Pediatric Patients
With Mild Traumatic Brain Injury and Age Matched Controls. Front. Behav. Neurosci.
14:581819. doi: 10.3389/fnbeh.2020.581819
[18] M Hunfalvay, CM Roberts, N Murray, et al.Vertical smooth pursuit as a diagnostic
marker of traumatic brain injury. Concussion, 5 (2020), p. CNC69
[19] M. Vishwanath et al.,“Investigation of Machine Learning Approaches for Traumatic
Brain Injury Classification via EEG Assessment in Mice,”Sensors, vol. 20, no. 7, p.
2027, Apr. 2020, doi: 10.3390/s20072027.
[20] M. Vishwanath et al., “Classification of Electroencephalogram in a Mouse Model of
Traumatic Brain Injury Using Machine Learning Approaches”in 2020 42nd Annual
International Conference of the IEEE Engineering in Medicine & Biology Society
(EMBC), Montreal, QC, Canada, Jul. 20
[21] Aggarwal, C.C., 2015. Outlier analysis. In Data mining (pp. 237-263). Springer,
Cham.
[22] Liu, B., Huang, X., Wang, Y., Chen, X., & Gao, X. (2020). BETA: A Large Benchmark
Database Toward SSVEP-BCI Application. Frontiers in Neuroscience, 14, 627.
https://doi.org/10.3389/fnins.2020.00627
[23] Ghaffarpasand, F., Razmkon, A., and Dehghankhalili, M. (2013). Glasgow coma scale
score in pediatric patients with traumatic brain injury; limitations and reliability.
Bull. Emerg. Trauma 1, 135–136
[24] M Hunfalvay, CM Roberts, N Murray, et al.Vertical smooth pursuit as a diagnostic
marker of traumatic brain injury. Concussion, 5 (2020), p. CNC69
[25] Uzma Samadani, Robert Ritlop, Marleen Reyes, Elena Nehrbass, Meng Li, Elizabeth
Lamm, Julia Schneider, David Shimunov, Maria Sava, Radek Kolecki, Paige
Burris, Lindsey Altomare, Talha Mehmood, Theodore Smith, Jason H. Huang,
Christopher McStay, S. Rob Todd, Meng Qian, Douglas Kondziolka, Stephen Wall,
and Paul Huang.Journal of Neurotrauma.Apr 2015.548-556. http://doi.org/10.1089/
neu.2014.3687
[26] Snegireva N, Derman W, Patricios J, Welman KE. Eye tracking technology in sportsrelated
concussion: a systematic review and meta-analysis. Physiol Meas. 2018 Dec
21;39(12):12TR01. doi: 10.1088/1361-6579/aaef44. PMID: 30523971.
[27] Bear, M. F., Connors, B. W., & Paradiso, M. A. (2016). Neuroscience: Exploring
the brain (Fourth edition). Wolters Kluwer.
[28] Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon, S. M., Hung, C. P., &
Lance, B. J. (2018). Eegnet: A compact convolutional network for eeg-based braincomputer
interfaces. Journal of Neural Engineering, 15(5), 056013. https://doi.org/
10.1088/1741-2552/aace8c
[29] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
L., & Polosukhin, I. (2017). Attention is all you need (arXiv:1706.03762). arXiv.
http://arxiv.org/abs/1706.03762
[30] Toffanin P, de Jong R, Johnson A, Martens S. Using frequency tagging to quantify
attentional deployment in a visual divided attention task. Int J Psychophysiol. 2009
Jun;72(3):289-98. doi: 10.1016/j.ijpsycho.2009.01.006. PMID: 19452603
[31] Rizzo, John‐Ross, et al. ”Rapid number naming in chronic concussion: eye movements
in the King–Devick test.” Annals of clinical and translational neurology 3.10
(2016): 801-811.
[32] ZHANG, Ge, et al. Computational exploration of dynamic mechanisms of steady
state visual evoked potentials at the whole brain level. NeuroImage, 2021, 237:
118166.
[33] Anderson Schrader, Isabella Gebhart, Drew Garrison, Andrew Duchowski, Martian
Lapadatescu, Weiyu Feng, Mahmoud Thabit, Fang Wang, Krzysztof Krejtz, and
Daniel D. Petty. 2021. Toward Eye-Tracked Sideline Concussion Assessment in eXtended
Reality. In ACM Symposium on Eye Tracking Research and Applications
(ETRA ’21 Full Papers). Association for Computing Machinery, New York, NY,
USA, Article 7, 1–11. https://doi.org/10.1145/3448017.3457378
[34] Hallock H, Mantwill M, Vajkoczy P, Wolfarth B, Reinsberger C, Lampit A, Finke
C. Sport-Related Concussion: A Cognitive Perspective. Neurol Clin Pract. 2023
Apr;13(2) e200123. doi:10.1212/cpj.0000000000200123. PMID: 36891462; PMCID:
PMC9987206.
[35] Langlois JA, Rutland-Brown W, Wald MM (2006) The epidemiology and impact of
traumatic brain injury: a brief overview. J Head Trauma Rehabil 21(5):375–378
[36] Santos, Fernando V., et al. ”Virtual reality in concussion management: from lab to
clinic.” Journal of Clinical and Translational Research 5.4 (2020): 148.
[37] LeMarshall, Soraya J., et al. ”Virtual reality-based interventions for the rehabilitation
of vestibular and balance impairments post-concussion: a scoping review.” Journal
of neuroengineering and rehabilitation 20.1 (2023): 31. -
指導教授 葉士青 吳曉光(Shih-Ching Yeh Hsiao-Kuang Wu) 審核日期 2023-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明