博碩士論文 110522157 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:52.15.196.4
姓名 張垣溯(Yuan-Su Zhang)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 基於區塊鏈的多機器人協作地圖探索
(Blockchain-based Multi-Robot Collaborative Map Exploration)
相關論文
★ 整合GRAFCET虛擬機器的智慧型控制器開發平台★ 分散式工業電子看板網路系統設計與實作
★ 設計與實作一個基於雙攝影機視覺系統的雙點觸控螢幕★ 智慧型機器人的嵌入式計算平台
★ 一個即時移動物偵測與追蹤的嵌入式系統★ 一個固態硬碟的多處理器架構與分散式控制演算法
★ 基於立體視覺手勢辨識的人機互動系統★ 整合仿生智慧行為控制的機器人系統晶片設計
★ 嵌入式無線影像感測網路的設計與實作★ 以雙核心處理器為基礎之車牌辨識系統
★ 基於立體視覺的連續三維手勢辨識★ 微型、超低功耗無線感測網路控制器設計與硬體實作
★ 串流影像之即時人臉偵測、追蹤與辨識─嵌入式系統設計★ 一個快速立體視覺系統的嵌入式硬體設計
★ 即時連續影像接合系統設計與實作★ 基於雙核心平台的嵌入式步態辨識系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-14以後開放)
摘要(中) 多機器人協作探索未知區域是多機器人系統重要應用。然而,通訊頻寬資源消耗量、資料安全性、資料一致性、決策共識和機器人異質性等問題限制了多機器人協作探索的效率和完整度。為了解決這些問題,本論文提出了一種基於區塊鏈的多機器人協作地圖探索方法,並以此方法研發了一個多機器人協作探索系統。該系統利用區塊鏈技術實現了機器人間的通訊和資料共享,同時透過身分認證機制建立了機器人間的信任橋樑,並提供了一個公平的分散式決策平台。我們使用一個拓樸地圖作為機器人間的共享地圖,以減少彼此之間大量互動造成通訊頻寬的消耗。在拓樸地圖的基礎上,我們提出了一種輕量化的任務分配演算法Tiny-MinPos,該演算法在先前的研究成果MinPos的架構基礎上進行了擴展,將原本僅適用於佔據網格地圖的限制推廣至拓樸地圖。最後我們在Gazebo模擬器中進行實驗。相較於單機器人系統,我們的系統在區域探索效率方面提升了56%,並在相同時間內的地圖覆蓋率方面平均提升了32%,而Tiny-MinPos相較於Greedy演算法的探索效率提高了15%。實驗結果表明,我們的方法在提高探索效率、增強系統可靠性和實現任務分配公平性方面具有優勢。
摘要(英) Collaborative exploration of unknown areas by multiple robots is a critical application of multi-robot systems. However, issues such as communication bandwidth consumption, data security, data consistency, decision-making consensus, and robot heterogeneity restrict the efficiency and completeness of multi-robot collaborative exploration. To address these issues, this paper proposes a blockchain-based approach for multi-robot collaborative map exploration and develops a multi-robot collaborative exploration system based on this approach. The system utilizes blockchain technology to enable communication and data sharing among robots. Additionally, it establishes a trust bridge among robots through an identity authentication mechanism and provides a fair decentralized decision-making platform. We employ a topological map as a shared map among robots to reduce the consumption of communication bandwidth caused by extensive interactions. Based on the topological map, we propose a lightweight task allocation algorithm called Tiny-MinPos. This algorithm extends the framework of the previous research achievement, MinPos, from its original applicability to occupancy grid maps to include topological maps. Finally, we conducted experiments in the Gazebo simulator. Compared to a single-robot system, our system achieved a 56% improvement in area exploration efficiency and an average of 32% increase in map coverage within the same timeframe. Furthermore, Tiny-MinPos demonstrated a 15% improvement in exploration efficiency compared to the Greedy algorithm. The experimental results highlight the advantages of our approach in enhancing exploration efficiency, improving system reliability, and achieving fairness in task allocation.
關鍵字(中) ★ 區塊鏈
★ 多機器人
★ 地圖探索
關鍵字(英)
論文目次 目錄
摘要 I
Abstract II
誌謝 III
目錄 V
圖目錄 VIII
表目錄 X
第一章、緒論 1
1.1 研究背景 1
1.2 研究目標 3
1.3 論文架構 4
第二章、文獻回顧 5
2.1 異質多機器人系統SLAM 5
2.2 探索策略 7
2.3 區塊鏈與多機器人系統 9
2.3.1 區塊鏈的種類 11
2.3.2 智能合約 12
第三章、研究方法 13
3.1 更新區塊鏈世界狀態 15
3.1.1 拓樸地圖更新 15
3.1.2 任務點集合更新 16
3.2 生成任務點 16
3.3 過濾器 17
3.4 任務分配 18
3.5 導航策略及任務重新規劃策略 20
3.5.1 導航策略 21
3.5.2 任務重新規劃策略 21
第四章、系統設計 23
4.1 MIAT系統設計方法論 23
4.1.1 IDEF0階層式模組化設計 23
4.1.2 GRAFCET離散事件建模 24
4.2 基於區塊鏈的多機器人協作地圖探索模組化設計 26
4.2.1 區塊鏈系統模組 26
4.2.2 機器人自主移動區域探索模組化設計 28
4.3 基於區塊鏈的多機器人協作地圖探索離散事件建模 28
4.3.1 區塊鏈系統模組離散事件建模 29
4.3.2 智能合約模組離散事件建模 31
4.3.3 機器人自主移動區域探索離散事件建模 35
第五章、實驗結果 37
5.1 實驗模擬環境 37
5.2 區塊鏈網路驗證 40
5.2.1 註冊節點 40
5.2.2 啟動節點 42
5.2.3 部署智能合約 44
5.3 未知區域環境探索實驗 45
5.3.1 實驗結果 47
5.3.2 效能評估 49
5.4 Tiny-MinPos效能實驗 51
5.4.1 探索效率 51
5.4.2 通訊消耗 52
5.5 任務重新規劃頻率實驗 53
5.6 系統可靠性實驗 54
第六章、結論與未來展望 58
6.1 結論 58
6.2 未來展望 59
參考文獻 60
參考文獻 參考文獻
[1] A. Gautam and S. Mohan, "A review of research in multi-robot systems," in 2012 IEEE 7th international conference on industrial and information systems (ICIIS), pp. 1-5, 2012.
[2] J. P. Queralta, J. Taipalmaa, B. C. Pullinen, V. K. Sarker, T. N. Gia, H. Tenhunen, M. Gabbouj, J. Raitoharju, and T. Westerlund, "Collaborative Multi-Robot Search and Rescue: Planning, Coordination, Perception, and Active Vision," IEEE Access, vol. 8, pp. 191617-191643, 2020.
[3] H. Zhu, J. Juhl, L. Ferranti, and J. Alonso-Mora, "Distributed Multi-Robot Formation Splitting and Merging in Dynamic Environments," in 2019 International Conference on Robotics and Automation (ICRA), pp. 9080-9086, 2019.
[4] P. Dasgupta, J. Baca, K. Guruprasad, A. Muñoz-Meléndez, and J. Jumadinova, "The comrade system for multirobot autonomous landmine detection in postconflict regions," Journal of Robotics, vol. 2015, 2015.
[5] M. Corah, C. O’Meadhra, K. Goel, and N. Michael, "Communication-Efficient Planning and Mapping for Multi-Robot Exploration in Large Environments," IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1715-1721, 2019.
[6] S. Miah, J. Knoll, and A. Malinowski, "Heterogeneous multi-robot trajectories for area coverage optimization," in 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE), pp. 1099-1104, 2017.
[7] D. Portugal and R. P. Rocha, "Distributed multi-robot patrol: A scalable and fault-tolerant framework," Robotics and Autonomous Systems, vol. 61, no. 12, pp. 1572-1587, 2013.
[8] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, "ORB-SLAM: a versatile and accurate monocular SLAM system," IEEE transactions on robotics, vol. 31, no. 5, pp. 1147-1163, 2015.
[9] G. Grisetti, C. Stachniss, and W. Burgard, "Improved techniques for grid mapping with rao-blackwellized particle filters," IEEE transactions on Robotics, vol. 23, no. 1, pp. 34-46, 2007.
[10] W. Hess, D. Kohler, H. Rapp, and D. Andor, "Real-time loop closure in 2D LIDAR SLAM," in 2016 IEEE international conference on robotics and automation (ICRA), pp. 1271-1278, 2016.
[11] S. Saeedi, M. Trentini, M. Seto, and H. Li, "Multiple‐robot simultaneous localization and mapping: A review," Journal of Field Robotics, vol. 33, no. 1, pp. 3-46, 2016.
[12] R. Dubé, A. Gawel, H. Sommer, J. Nieto, R. Siegwart, and C. Cadena, "An online multi-robot SLAM system for 3D LiDARs," in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1004-1011, 2017.
[13] M. Kegeleirs, G. Grisetti, and M. Birattari, "Swarm slam: Challenges and perspectives," Frontiers in Robotics and AI, vol. 8, p. 618268, 2021.
[14] S. Nakamoto, "Bitcoin: A peer-to-peer electronic cash system," Decentralized business review, p. 21260, 2008.
[15] E. Castelló Ferrer, "The blockchain: a new framework for robotic swarm systems," in Proceedings of the Future Technologies Conference (FTC) 2018: Volume 2, pp. 1037-1058, 2019.
[16] S. H. Alsamhi and B. Lee, "Blockchain-empowered multi-robot collaboration to fight COVID-19 and future pandemics," Ieee Access, vol. 9, pp. 44173-44197, 2020.
[17] S. Wang, Y. Yuan, X. Wang, J. Li, R. Qin, and F. Y. Wang, "An Overview of Smart Contract: Architecture, Applications, and Future Trends," in 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 108-113, 2018.
[18] Z. Zivkovic, B. Bakker, and B. Krose, "Hierarchical map building using visual landmarks and geometric constraints," in 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2480-2485, 2005.
[19] A. Elfes, "Using occupancy grids for mobile robot perception and navigation," Computer, vol. 22, no. 6, pp. 46-57, 1989.
[20] A. Bautin, O. Simonin, and F. Charpillet, "Minpos: A novel frontier allocation algorithm for multi-robot exploration," in Intelligent Robotics and Applications: 5th International Conference, ICIRA 2012, Montreal, Canada, October 3-5, 2012, Proceedings, Part II 5, pp. 496-508, 2012.
[21] K. Ebadi, Y. Chang, M. Palieri, A. Stephens, A. Hatteland, E. Heiden, A. Thakur, N. Funabiki, B. Morrell, and S. Wood, "LAMP: Large-scale autonomous mapping and positioning for exploration of perceptually-degraded subterranean environments," in 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 80-86, 2020.
[22] P.-Y. Lajoie, B. Ramtoula, Y. Chang, L. Carlone, and G. Beltrame, "Door-slam: Distributed, online, and outlier resilient slam for robotic teams," IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1656-1663, 2020.
[23] W. Tabib, K. Goel, J. Yao, M. Dabhi, C. Boirum, and N. Michael, "Real-Time Information-Theoretic Exploration with Gaussian Mixture Model Maps," in Robotics: Science and Systems, pp. 1-9, 2019.
[24] J. Yu, J. Tong, Y. Xu, Z. Xu, H. Dong, T. Yang, and Y. Wang, "SMMR-Explore: SubMap-based Multi-Robot Exploration System with Multi-robot Multi-target Potential Field Exploration Method," in 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 8779-8785, 2021.
[25] F. N. Santos, A. P. Moreira, and P. C. Costa, "Towards extraction of topological maps from 2D and 3D occupancy grids," in Progress in Artificial Intelligence: 16th Portuguese Conference on Artificial Intelligence, EPIA 2013, Angra do Heroísmo, Azores, Portugal, September 9-12, 2013. Proceedings 16, pp. 307-318, 2013.
[26] B. Yamauchi, "A frontier-based approach for autonomous exploration," in Proceedings 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA′97.′Towards New Computational Principles for Robotics and Automation′, pp. 146-151, 1997.
[27] H. Umari and S. Mukhopadhyay, "Autonomous robotic exploration based on multiple rapidly-exploring randomized trees," in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1396-1402, 2017.
[28] S. M. LaValle, "Rapidly-exploring random trees: A new tool for path planning," 1998.
[29] J. Bayer and J. Faigl, "Decentralized Topological Mapping for Multi-robot Autonomous Exploration under Low-Bandwidth Communication," in 2021 European Conference on Mobile Robots (ECMR), pp. 1-7, 2021.
[30] Z. Zhang, J. Yu, J. Tang, Y. Xu, and Y. Wang, "MR-TopoMap: Multi-Robot Exploration Based on Topological Map in Communication Restricted Environment," IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 10794-10801, 2022.
[31] F. Radenović, G. Tolias, and O. Chum, "Fine-tuning CNN image retrieval with no human annotation," IEEE transactions on pattern analysis and machine intelligence, vol. 41, no. 7, pp. 1655-1668, 2018.
[32] I. Navarro and F. Matía, "A framework for the collective movement of mobile robots based on distributed decisions," Robotics and Autonomous Systems, vol. 59, no. 10, pp. 685-697, 2011.
[33] S. Pourmehr, V. M. Monajjemi, R. Vaughan, and G. Mori, "“You two! Take off!”: Creating, modifying and commanding groups of robots using face engagement and indirect speech in voice commands," in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 137-142, 2013.
[34] G. Valentini, H. Hamann, and M. Dorigo, "Efficient decision-making in a self-organizing robot swarm: On the speed versus accuracy trade-off," in Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems, pp. 1305-1314, 2015.
[35] N. Z. Aitzhan and D. Svetinovic, "Security and Privacy in Decentralized Energy Trading Through Multi-Signatures, Blockchain and Anonymous Messaging Streams," IEEE Transactions on Dependable and Secure Computing, vol. 15, no. 5, pp. 840-852, 2018.
[36] I. Afanasyev, A. Kolotov, R. Rezin, K. Danilov, M. Mazzara, S. Chakraborty, A. Kashevnik, A. Chechulin, A. Kapitonov, and V. Jotsov, "Towards blockchain-based multi-agent robotic systems: Analysis, classification and applications," arXiv preprint arXiv:1907.07433, 2019.
[37] T. L. Basegio, R. A. Michelin, A. F. Zorzo, and R. H. Bordini, "A decentralised approach to task allocation using blockchain," in Engineering Multi-Agent Systems: 5th International Workshop, EMAS 2017, Sao Paulo, Brazil, May 8-9, 2017, Revised Selected Papers 5, pp. 75-91, 2018.
[38] S. Salimi, J. P. Queralta, and T. Westerlund, "Hyperledger Fabric Blockchain and ROS 2 Integration for Autonomous Mobile Robots," in 2023 IEEE/SICE International Symposium on System Integration (SII), pp. 1-8, 2023.
[39] J. Barraquand, B. Langlois, and J.-C. Latombe, "Numerical potential field techniques for robot path planning," IEEE transactions on systems, man, and cybernetics, vol. 22, no. 2, pp. 224-241, 1992.
[40] J. Faigl, O. Simonin, and F. Charpillet, "Comparison of task-allocation algorithms in frontier-based multi-robot exploration," in Multi-Agent Systems: 12th European Conference, EUMAS 2014, Prague, Czech Republic, December 18-19, 2014, Revised Selected Papers 12, pp. 101-110, 2015.
[41] C.-H. Chen, M.-Y. Lin, and X.-C. Guo, "High-level modeling and synthesis of smart sensor networks for Industrial Internet of Things," Computers & Electrical Engineering, vol. 61, pp. 48-66, 2017.
指導教授 陳慶瀚(Ching-Han Chen) 審核日期 2023-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明