博碩士論文 110522610 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:18.217.4.206
姓名 李雨澤(Indra Yusuf Kinarta)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 基于小波变换的指纹活度检测,具有聚集 LPQ 和 LBP 特征
(Fingerprint Liveness Detection based on Wavelet Transform with Aggregation LPQ and LBP Feature)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 指紋具有勝任的獨特性水準,因為各種特徵可以在每個個體中形成不同的模式
。它是各種多重的驗證要求,例如手機,銀行帳戶,出勤等。 然後,將處理這些資訊
以生成更真實,更準確的資料。 除了指紋識別可以提高安全性外,該方案還容易受到
感測器級別的攻擊。研究表明, 通過使用複製良好的合成手指(如明膠,乳膠,eco
flex,playdoh,木膠等)可以欺騙各種指紋掃描器,這些材料都是基於濕度的,大多數
指紋掃描儀可以可視化,保持性能的預防措施是活度檢測。 提出活體檢測來識別這種
欺騙性吸引,以提高指紋識別系統的安全性。活體檢測是一種功能,用於確定所呈現
的生物特徵樣本是否來自活體。 因此,我們深入利用手工製作的工藝來實現足夠的性
能。我們使用局部二進位模式和相位量化特徵對像素鄰域分佈中的空間和頻域進行共
軛。同時,在預處理中,我們使用圖像轉換來製作更多的變化圖像。為了封裝雜訊的
可能性,我們添加了小波變換作為雜訊去除。最後,我們使用一種突出的機器學習方
式映射學習階段,即、支援向量機 (SVM)。我們的實驗以準確性和平均錯誤率進行
評估。所提出的方法在 LivDet 2011,LivDet 2013 和 LivDet 2015 上的平均錯誤率降低
4.2,2.1 和 5.1 方面取得了可持續的結果。
摘要(英) Fingerprint has a competent level of uniqueness because various features can form a
different pattern in each individual. It is a verification requirement in various multiple, such as
mobile phones, banking accounts, attendance, etc. This information will then be processed to
generate more factual, accurate data. Besides fingerprint recognition can improve security, the
scheme turns out to be vulnerable to attacks at the sensor level. Studies have shown that it is
possible to trick various fingerprint scanners by using well duplicated synthetic fingers such
as gelatin, latex, eco flex, playdoh, wood glue, etc. These materials are humidity-based, and
most fingerprint scanners can visualize the preventive measures in maintaining the
performance is liveness detection. Liveness detection is proposed to identify this kind of
spoof attracts to improve security for the fingerprint recognition system. Liveness detection is
a function that determines whether the presented biometric sample originated from a live
body. Thus, we deep exploited the handcrafted process to achieve adequate performance. We
conjugate the spatial and frequency domain in pixel neighborhood distribution using local
binary pattern and phase quantization feature. Meanwhile, in preprocessing, we use image
translation to make more variation images. And to encapsulate the noise possibility, we added
the wavelet transform as the noise removal. Finally, we map the learning stage using a
prominent machine learning way, i.e., support vector machine (SVM). Our experiment is
evaluated with accuracy and average error rate. The proposed method has achieved
sustainable results in terms of reduction in average error rates 4.2, 2.1, and 5.1 on LivDet
2011, LivDet 2013, and LivDet 2015.
關鍵字(中) ★ 指紋
★ 活度檢測
★ 假的
★ 活著
★ 小波
★ LBP
★ LPQ
關鍵字(英) ★ Fingerprints
★  Liveness Detection
★  Fake
★  Live
★  Wavelet
★  LBP
★  LPQ
論文目次 抽象...........................................................................................................................................iii
Abstract......................................................................................................................................iv
ACKNOWLEDGMENTS..........................................................................................................v
CONTENTS ..............................................................................................................................vi
List of Figures..........................................................................................................................viii
List of Tables.............................................................................................................................ix
CHAPTER I................................................................................................................................1
INTRODUCTION......................................................................................................................1
1.1 Motivation......................................................................................................................... 1
1.2 Research Problem ............................................................................................................. 2
1.3 Research Scope ................................................................................................................. 2
1.4 Research Objectives.......................................................................................................... 3
1.5 Research benefits.............................................................................................................. 3
1.6 Research Contributions..................................................................................................... 3
1.7 Thesis Overview ............................................................................................................... 3
CHAPTER II ..............................................................................................................................5
LITERATURE REVIEW...........................................................................................................5
CHAPTER III.............................................................................................................................7
THEORETICAL THESIS..........................................................................................................7
3.1 Biometric .......................................................................................................................... 7
3.1.1 Biometric Recognition..........................................................................................7
3.1.2 Biometric System .................................................................................................8
3.2 Fingerprints..................................................................................................................... 10
3.2.1 Fingerprint Representation .................................................................................11
3.2.2 Fingerprint Impressions......................................................................................11
3.3 Fingerprint Databases ..................................................................................................... 13
3.3.1 Introduction of Fingerprint Liveness Detection .................................................13
3.3.2 Database collection.............................................................................................13
3.4 Fingerprint Enhancement................................................................................................ 18
CHAPTER IV...........................................................................................................................20

vii

RESEARCH METHODOLOGY .............................................................................................20
4.1 System Analysis.............................................................................................................. 20
4.2 Tools and Materials ........................................................................................................ 21
4.2 Research Procedures....................................................................................................... 21
4.3 General System Design................................................................................................... 22
4.3.1 Dataset Preparation Design ................................................................................25
4.3.2 Feature Extraction Design ..................................................................................26
4.4 Evaluation Design........................................................................................................... 31
CHAPTER V............................................................................................................................33
RESULTS AND ANALYSIS ..................................................................................................33
5.1 Description of Fingerprint LivDet Datasets.................................................................... 33
5.2 Baseline Performance using Liveness Detection Evaluation.......................................... 36
5.3 Performance of Proposed Method .................................................................................. 36
CHAPTER VI...........................................................................................................................45
CONCLUSIONS ......................................................................................................................45
6.1 Research Summaries....................................................................................................... 45
6.2 Research Limitations ...................................................................................................... 45
6.3 Future Research .............................................................................................................. 46
Bibliographies...........................................................................................................................47
參考文獻 [1] Kücken, Michael, and Alan C. Newell. "Fingerprint formation." Journal of theoretical
biology 235.1 (2005): 71-83.
[2] Pham, Tri-Cong, et al. "Improving skin-disease classification based on customized loss
function combined with balanced mini-batch logic and real-time image augmentation."
IEEE Access 8 (2020): 150725-150737.
[3] L. Ghiani, G. L. Marcialis, and F. Roli, “Fingerprint liveness detection by local phase
quantization,” in 21st Int. Conf. on Pattern Recognition, pp. 2–5 (2012).
[4] C. Yuan, X. Sun, and R. Lv, “Fingerprint liveness detection based on multi-scale LPQ and
PCA,” China Commun. 13, 60–65 (2016).
[5] T. Ojala, M. Pietikäinen, and T. Mäenpää, “Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns,” IEEE Trans. Pattern Anal.
Mach. Intell. 24, 971–987 (2002).
[6] J. Qian, J. Yang, and G. Gao, “Discriminative histograms of local dominant orientation
(D-HLDO) for biometric image feature extraction,” Pattern Recognit. 46, 2724–2739
(2013).
[7] D. Gragnaniello et al., “Fingerprint liveness detection based on weber local image
descriptor,” in Workshop on Biometric Measurements and Systems for Security and
Medical Applications, IEEE (2013).
[8] L. Ghiani et al., “Fingerprint liveness detection using binarized statistical image features,”
in IEEE 6th Int. Biometrics: Theory, Applications and Systems (BTAS 2013), IEEE
(2013).
[9] R. Nosaka, Y. Ohkawa, and K. Fukui, “Feature extraction based on co-occurrence of
adjacent local binary patterns,” Adv. Image Video Technol. 2, 82–91 (2011).
[10] R. Nosaka, C. H. Suryanto, and K. Fukui, “Rotation invariant co-occurrence among
adjacent LBPs,” in Asian Conf. on Computer Vision, pp. 15–25, Springer, Berlin,
Heidelberg (2012).
[11] TK, Arun Kumar, et al. "Convolutional neural networks for fingerprint liveness detection
system." 2019 International Conference on Intelligent Computing and Control Systems
(ICCS). IEEE, 2019.
[12] J. Kundargi and R. G. Karandikar, Fingerprint Liveness Detection Using Wavelet-Based
Completed LBP Descriptor, Springer, Singapore, (2018).
[13] Mehboob, Rubab, et al. "Live fingerprint detection using magnitude of perceived spatial
stimuli and local phase information." Journal of Electronic Imaging 27.5 (2018).

48

[14] Solanki, Arun, Anand Nayyar, and Mohd Naved, eds. Generative Adversarial Networks
for Image-to-Image Translation. Academic Press, 2021.
[15] Anoosheh, Asha, et al. "Night-to-day image translation for retrieval-based localization."
2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019.
[16] Yuan, Chengsheng, et al. "Fingerprint liveness detection using an improved CNN with
image scale equalization." IEEE Access 7 (2019): 26953-26966.
[17] X. Jia et al., “Multi-scale block local ternary patterns for fingerprints vitality detection,” in
Proc. 2013 Int. Conf. Biometrics (ICB 2013) (2013).
[18] W. Kim, “Coherence patterns, “Fingerprint liveness detection using local coherence
patterns,” IEEE Signal Process. Lett. 24(1), 51–55 (2017).
[19] Zhang, Yongliang, et al. "Slim-ResCNN: A deep residual convolutional neural network for
fingerprint liveness detection." IEEE Access 7 (2019): 91476-91487.
[20] Agarwal, Rohit, et al. "Fake and Live Fingerprint Detection Using Local Diagonal
Extrema Pattern and Local Phase Quantization." International Conference on Deep
Learning, Artificial Intelligence and Robotics. Springer, Cham, 2019.
[21] Casula, Roberto, et al. "LivDet 2021 fingerprint liveness detection competition-into the
unknown." 2021 IEEE International Joint Conference on Biometrics (IJCB). IEEE, 2021.
[22] F. Turroni, “Fingerprint Recognition: Enhancement, Feature Extraction and Automatic
Evaluation of Algorithms,” 2012.
[23] Manal Abdullah, Mona Alkhozae, and Mashaiel, “Fingerprint Matching Approach Based
on Bifurcation Minutiae,” J. Inf. Commun. Technol., vol. 2, no. 5, pp. 2047–3168, 2012.
[24] Ojala, Timo, Matti Pietikainen, and Topi Maenpaa. "Multiresolution gray-scale and
rotation invariant texture classification with local binary patterns." IEEE Transactions on
pattern analysis and machine intelligence 24.7 (2002): 971-987.
[25] E. Erwin, N. Karo, A. Sari, N. Aziza, and H. Putra, “The Enhancement of Fingerprint
Images using Gabor Filter,” J. Phys. Conf. Ser., vol. 1196, p. 12045, Mar. 2019, doi:
10.1088/1742-6596/1196/1/012045.
[26] L Karthik Narayan , Sonu. G , Soukhya S. M, 2020, “Fingerprint Recognition and its
Advanced Features”, International Journal Of Engineering Research & Technology
(IJERT) Volume 09, Issue 04 (April 2020)
[27] L. Ghiani et al., “Fingerprint liveness detection using local texture features,” IET
Biometrics 6, 224–231 (2017).
[28] D. Gragnaniello et al., “Local contrast phase descriptor for fingerprint liveness detection,”
Pattern Recognit. 48, 1050–1058 (2015).

49

[29] Z. Xia, R. Lv, and X. Sun, “Rotation-invariant Weber pattern and Gabor feature for
fingerprint liveness detection,” Multimed. Tools Appl. 77, 18187–18200 (2017).
[30] B. Zhang et al., “Local derivative pattern versus local binary pattern: face recognition with
high-order local pattern descriptor,” IEEE Trans. Image Process. 19, 533–544 (2010).
[31] W. Kim, “Coherence patterns, “Fingerprint liveness detection using local coherence
patterns,” IEEE Signal Process. Lett. 24(1), 51–55 (2017).
[32] Y. Jiang and X. Liu, “Uniform local binary pattern for fingerprint liveness,” J. Elect.
Comput. Eng. 2018, 1–9 (2018).
指導教授 王 家 慶 莊永裕 Reza Pulungan Ph.D Agus Harjoko Ph.D(Wang Jia-Ching Zhuang Yung-Yu Reza Pulungan Ph.D Agus Harjoko Ph.D) 審核日期 2022-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明