博碩士論文 110623003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.221.222.47
姓名 蕭惠文(Huei-Wen Siao)  查詢紙本館藏   畢業系所 太空科學與工程研究所
論文名稱 內太陽圈行星際三型太陽無線電波爆之特性分析
(Characteristics of Interplanetary Type III Solar Radio Bursts in the Inner Heliosphere)
相關論文
★ 臺灣銀行業財務績效、內部人持股及董監事薪酬重要影響因素研析★ 磁雲結構與其起始區域之多點觀測分析
★ 使用SDO / AIA觀測閃焰亮帶之運動情形★ 強烈太陽閃焰之電場估算及其與X射線之關係
★ 太陽閃焰硬X射線與微波觀測結合雙注入電子群之非熱輻射模擬研究★ IRIS Mg II譜線之太陽閃焰色球加熱現象研究
★ 太陽閃焰爆發前準週期脈衝之多波段觀測分析★ 第三型無線電波爆在不同太陽閃焰相位之研究
★ STEREO衛星之太陽高能質子特性與其加速源分析★ 日冕洞演化與高速太陽風之關係
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-12-31以後開放)
摘要(中) 太陽無線電波觀測,讓人們可以藉由遙測的方式,推測太陽日冕與行星際空間的背景狀態,亦或是太陽暫態活動的情形。本論文主要使用Parker Solar Probe (PSP) 於軌道1至軌道13期間 (2018年至2022年) 10.5 kHz至19.2 MHz的無線電波觀測資料,探討在內太陽圈環境觀測下,具有偏振表現的行星際三型太陽無線電波爆 (Interplanetary Type III solar radio burst) 訊號特性,並針對2020年01月27日與09月13日總共兩起三型無線電波爆事件,結合Solar Dynamic Observatory/Atmospheric Imaging Assembly (SDO/AIA) 的EUV影像與Solar Terrestrial Relations Observatory (STEREO) 和Wind衛星的無線電波觀測,分析三型無線電波爆的潛在源區。此外,本論文也針對2022年09月05日的複雜型三型無線電波爆 (Complex type III burst) 與2021年至2022年總共七起三型無線電波風暴 (Type III storm) 進行探討。
  本論文研究分析太陽三型無線電波爆的特性包括:總強度訊號與偏振訊號的上/下截止頻率、頻率漂移率、偏振度、衰減時長。結果顯示偏振訊號的上截止頻率與總強度訊號上截止頻率統計分佈接近,但下截止頻率的部分,偏振訊號普遍高於總強度訊號;頻率漂移率的頻譜指數略大於過去觀測結果;右旋圓形偏振 (Right-hand circular polarization, RHC) 事件數多於左旋圓形偏振事件數 (Left-hand circular polarization, LHC),最大偏振度介於0.4至1之間。另外,本論文研究所分析的偏振訊號主要有兩種型態,進一步針對軌道1至軌道8的該兩類型事件進行SEA分析 (Superposed epoch analysis),顯示此兩種型態的特徵分別為:總強度峰值之後、指數衰減至背景之前無圓形偏振訊號;與總強度峰值之後仍具有一定的強度,並隨著頻率降低、持續時間有增長的類型。另外,總強度訊號的衰減時長在不同高低的頻率範圍與不同偏振型態的訊號中,隨頻率的變化情形略有差異。
  而在個案分析結果中,本論文所探討的三型無線電波爆潛在源區皆是由太陽表面上之小型噴發事件造成的。針對複雜型三型無線電波爆事件的部分,偏振訊號只出現於下截止頻率附近,與大多數三型無線電波爆的偏振訊號形式不同。此外,在多方比對日冕儀影像後,確認所分析的複雜型三型無線電波爆是由Far-side的日冕物質拋射事件造成。最後,關於三型無線電波風暴的分析,顯示風暴期間的訊號皆具有明顯的偏振表現,LHC與RHC偏振表現事件數各占分析事件數總體一半,大部分具有頻率漂移的情形。
摘要(英) Solar radio emission provides a remote sensing probe for the solar corona, interplanetary space, and the solar transient activity. In this study, we analyze the interplanetary type III solar radio burst with circular polarization in the inner heliosphere observed by Parker Solar Probe (PSP) from 10.5 kHz to 19.2 MHz during its first thirteen orbits (2018-2022). We also examine two polarized type III events on 27 January 2020 and 13 September 2020 to find their potential radio source from radio observations observed by Solar Terrestrial Relations Observatory (STEREO), Wind, and EUV images observed by Solar Dynamic Observatory/Atmospheric Imaging Assembly (SDO/AIA). Besides, we investigate case studies of complex type III burst on 05 September 2022 and seven Type III storm events between 2021 and 2022.
  There are four properties of interplanetary type III solar radio burst we analyzed: high/low cut-off frequencies, frequency drift rate, circular polarization, and decay time. The results indicate that the high cut-off frequency of the polarized signal is close to the high cut-off frequency of the total intensity, but the lower cut-off frequency of the polarized signal is generally higher than the lower cut-off frequency of the total intensity. The spectral index of the frequency drift rate is slightly larger than that of the past observations. The number of right-hand circular polarization (RHC) events is higher than that of left-hand circular polarization (LHC) events; the maximum polarization is between 0.4 and 1. We apply the SEA analysis (Superposed Epoch Analysis) for the polarized Type III events from Orbit 1 to Orbit 8. There are two types of polarized patterns examined: one is non-circular polarized signal after the maximum total intensity, the other is the longer lasting polarized signal with decreasing frequency. For decay time, it has a slightly different tendency of frequency in different frequency ranges and different patterns of polarized signal.
  In the case studies, the potential radio sources of two polarized type III events studied in this paper are all caused by small eruptions on the solar surface. For the complex type III radio burst events, the polarized signal appears only near the lower cut-off frequency, which is very different from most type III radio bursts. After comparing the coronagraph images, it is confirmed that the complex type III radio burst was caused by Far-side coronal mass ejection (CME) event. For the results of type III storms, the number of analyzed LHC and RHC storms are close to each other. Furthermore, our findings suggest that the signals within storms have obvious polarization and most of them have frequency drift.
關鍵字(中) ★ 太陽
★ 三型太陽無線電波爆
★ 內太陽圈
★ 行星際空間
★ 派克太陽探測器
關鍵字(英) ★ sun
★ type III solar radio burst
★ inner heliosphere
★ interplanetary space
★ Parker Solar Probe
論文目次 摘要 i
ABSTRACT iii
誌謝 v
目錄 vii
圖目錄 ix
表目錄 xi
一、緒論 1
1-1 太陽輻射 1
1-2 太陽無線電波輻射機制 5
1-3 太陽無線電波爆 11
1-4 三型無線電波爆 15
1-4-1 行星際三型無線電波爆 16
1-4-2 非典型三型無線電波爆 19
1-5 太陽無線電波觀測 23
1-5-1 地面觀測 25
1-5-2 衛星觀測 28
1-6 文獻回顧 31
1-7 研究動機 33
二、資料介紹 35
2-1 Parker Solar Probe (PSP) 35
2-1-1 FIELDS/RFS 40
2-1-2 Stokes Parameters 42
2-2 SDO/AIA 45
三、觀測與分析 50
3-1 動態頻譜圖與圓形偏振頻譜圖 50
3-1-1 三型無線電波爆總強度訊號篩選 51
3-1-2 三型無線電波爆圓形偏振訊號篩選 53
3-1-3 衰減時長計算 57
3-1-4 SEA分析 58
3-1-5 頻率漂移率 60
3-2 三型無線電波爆潛在源區尋找 61
四、結果 64
4-1 三型無線電波爆事件 64
4-2 具偏振表現的三型無線電波爆特性分析 65
4-3 三型無線電波爆之SEA分析 74
4-4 三型無線電波爆之衰減時長分析 79
4-5 三型無線電波爆潛在源區分析 83
4-5-1 2020年01月27日Fuzzy/RHC 83
4-5-2 2020年09月13日Fuzzy/RHC 90
4-6 複雜型三型無線電波爆 96
4-7 三型無線電波風暴 102
五、討論 113
5-1 三型無線電波爆截止頻率 113
5-2 頻率漂移率 114
5-3 偏振 115
5-4 衰減時長 118
六、總結 120
參考文獻 122
附錄一 132
參考文獻 [1] Alissandrakis, C. E., Nindos, A., Patsourakos, S., & Hillaris, A. 2021, Multiwavelength observations of a metric type-II event, Astronomy and Astrophysics, 654, A112. https://doi.org/10.1051/0004-6361/202141672
[2] Alissandrakis, C. E., Nindos, A., Patsourakos, S., Kontogeorgos, A., & Tsitsipis, P. 2015, A tiny event producing an interplanetary type III burst, Astronomy & Astrophysics, 582. https://doi.org/10.1051/0004-6361/201526265
[3] Alvarez, H., & Haddock, F. T. 1973a, Decay time of type III solar bursts observed at kilometric wavelengths, Solar Physics, 30, 175. https://doi.org/10.1007/BF00156186
[4] Alvarez, H., & Haddock, F. T. 1973b, Solar Wind Density Model from km-Wave Type III Bursts, Solar Physics, 29, 197. https://doi.org/10.1007/bf00153449
[5] Aschwanden, M. J. 2005, in Physics of the Solar Corona: An Introduction with Problems and Solutions, ed. M. J. Aschwanden (Berlin, Heidelberg: Springer Berlin Heidelberg), 637
[6] Aschwanden, M. J., Benz, A. O., & Montello, M. L. 1994, Coherent-Phase or Random-Phase Acceleration of Electron Beams in Solar Flares, The Astrophysical Journal, 431, 432. https://doi.org/10.1086/174497
[7] Aubier, M. G., Leblanc, Y., & Moller-Pedersen, B. 1978, Type I and Type Ill Storm Radiation, Astronomy and Astrophysics, 70, 685.
[8] Badman, S. T., et al. 2022, Tracking a Beam of Electrons from the Low Solar Corona into Interplanetary Space with the Low Frequency Array, Parker Solar Probe, and 1 au Spacecraft, The Astrophysical Journal, 938, 95. https://doi.org/10.3847/1538-4357/ac90c2
[9] Bale, S. D., et al. 2016, The FIELDS Instrument Suite for Solar Probe Plus. Measuring the Coronal Plasma and Magnetic Field, Plasma Waves and Turbulence, and Radio Signatures of Solar Transients, Space Science Reviews, 204, 49. https://doi.org/10.1007/s11214-016-0244-5
[10] Benz, A. O. 2002, Plasma astrophysics [electronic resource] : kinetic processes in solar and stellar coronae / by Arnold O. Benz (2nd ed.; Dordrecht ;: Kluwer Academic Publishers)
[11] Benz, A. O., Monstein, C., & Meyer, H. 2005, Callisto A New Concept for Solar Radio Spectrometers, Solar Physics, 226, 143. https://doi.org/10.1007/s11207-005-5688-9
[12] Boischot, A., de La Noe, J., & Moller-Pedersen, B. 1970, Relation between Metric and Decametric Noise Storm Activity, Astronomy and Astrophysics, 4, 159.
[13] Bougeret, J.-L., Fainberg, J., & Stone, R. G. 1984, Interplanetary radio storms. II - Emission levels and solar wind speed in the range 0.05-0.8 AU, Astronomy and Astrophysics, 141, 17.
[14] Bougeret, J.-L., et al. 1998, A shock associated (SA) radio event and related phenomena observed from the base of the solar corona to 1 AU, Geophysical Research Letters, 25, 2513. https://doi.org/10.1029/98gl50563
[15] Bougeret, J. L., et al. 2008, S/WAVES: The Radio and Plasma Wave Investigation on the STEREO Mission, Space Science Reviews, 136, 487. https://doi.org/10.1007/s11214-007-9298-8
[16] Brueckner, G. E., et al. 1995, The Large Angle Spectroscopic Coronagraph (LASCO), Solar Physics, 162, 357. https://doi.org/10.1007/bf00733434
[17] Cairns, I. H., Robinson, P. A., & Zank, G. P. 2000, Progress on Coronal, Interplanetary, Foreshock, and Outer Heliospheric Radio Emissions, Publications of the Astronomical Society of Australia, 17, 22. https://doi.org/10.1071/AS00022
[18] Cane, H. V., Stone, R. G., Fainberg, J., Stewart, R. T., Steinberg, J. L., & Hoang, S. 1981, Radio evidence for shock acceleration of electrons in the solar corona, Geophysical Research Letters, 8, 1285. https://doi.org/10.1029/GL008i012p01285
[19] Cattell, C., et al. 2021, Periodicities in an active region correlated with Type III radio bursts observed by Parker Solar Probe, Astronomy and Astrophysics, 650, A6. https://doi.org/10.1051/0004-6361/202039510
[20] Cerruti, A. P., Kintner, P. M., Gary, D. E., Mannucci, A. J., Meyer, R. F., Doherty, P., & Coster, A. J. 2008, Effect of intense December 2006 solar radio bursts on GPS receivers, Space Weather, 6, n/a. https://doi.org/10.1029/2007sw000375
[21] Chen, L., Ma, B., Wu, D., Zhao, G., Tang, J., & Bale, S. D. 2021, An Interplanetary Type IIIb Radio Burst Observed by Parker Solar Probe and Its Emission Mechanism, The Astrophysical Journal, 915, L22. https://doi.org/10.3847/2041-8213/ac0b43
[22] Chree, C. 1913, Some Phenomena of Sunspots and of Terrestrial Magnetism at Kew Observatory, Philosophical Transactions of the Royal Society of London Series A, 212, 75. https://doi.org/10.1098/rsta.1913.0003
[23] Culhane, J. L., et al. 2007, The EUV Imaging Spectrometer for Hinode, Solar Physics, 243, 19. https://doi.org/10.1007/s01007-007-0293-1
[24] Del Zanna, G., Aulanier, G., Klein, K.-L., & Török, T. 2011, A single picture for solar coronal outflows and radio noise storms, Astronomy and Astrophysics, 526, A137. https://doi.org/10.1051/0004-6361/201015231
[25] Domingo, V., Fleck, B., & Poland, A. I. 1995, The SOHO Mission: an Overview, Solar Physics, 162, 1. https://doi.org/10.1007/bf00733425
[26] Dulk, G. A. 1990, Interplanetary Particle Beams, Solar Physics, 130, 139. https://doi.org/10.1007/bf00156785
[27] Dulk, G. A., & Marsh, K. A. 1982, Simplified expressions for the gyrosynchrotron radiation from mildly relativistic, nonthermal and thermal electrons, The Astrophysical Journal, 259, 350. https://doi.org/10.1086/160171
[28] Dulk, G. A., & Suzuki, S. 1980, The position and polarization of Type III solar bursts, Astronomy and Astrophysics, 88, 203.
[29] Evans, L. G., Fainberg, J., & Stone, R. G. 1973, Characteristics of Type III Exciters Derived from Low Frequency Radio Observations, Solar Physics, 31, 501. https://doi.org/10.1007/bf00152825
[30] Fainberg, J., & Stone, R. G. 1970, Type III Solar Radio Burst Storms Observed at Low Frequencies, Solar Physics, 15, 222. https://doi.org/10.1007/bf00149487
[31] Fox, N. J., et al. 2016, The Solar Probe Plus Mission: Humanity′s First Visit to Our Star, Space Science Reviews, 204, 7. https://doi.org/10.1007/s11214-015-0211-6
[32] Fränz, M., & Harper, D. 2002, Heliospheric coordinate systems, Planetary and Space Science, 50, 217. https://doi.org/10.1016/s0032-0633(01)00119-2
[33] Gary, D. E., & Hurford, G. J. 1989, Solar radio burst spectral observations, particle acceleration, and wave-particle interactions, Washington DC American Geophysical Union Geophysical Monograph Series, 54, 237. https://doi.org/10.1029/GM054p0237
[34] Gary, D. E., & Hurford, G. J. 2005, in Solar and Space Weather Radiophysics: Current Status and Future Developments, eds. D. E. Gary, & C. U. Keller (Dordrecht: Springer Netherlands), 71
[35] Gieseler, J., et al. 2023, Solar-MACH: An open-source tool to analyze solar magnetic connection configurations, Frontiers in Astronomy and Space Sciences, 9. https://doi.org/10.3389/fspas.2022.1058810
[36] Gopalswamy, N. 2004. in Astrophysics and Space Science Library, Interplanetary Radio Bursts, eds. D. E. Gary, & C. U. Keller, 305
[37] Gopalswamy, N., et al. 2000, Radio-rich solar eruptive events, Geophysical Research Letters, 27, 1427. https://doi.org/10.1029/1999gl003665
[38] Harra, L., et al. 2021, The active region source of a type III radio storm observed by Parker Solar Probe during encounter 2, Astronomy and Astrophysics, 650, A7. https://doi.org/10.1051/0004-6361/202039514
[39] Hartz, T. R. 1964, Solar noise observations from the Alouette satellite, Annales d′Astrophysique, 27, 831.
[40] Hey, J. S. 1946, Solar Radiations in the 4–6 Metre Radio Wave-Length Band, Nature, 157, 47. https://doi.org/10.1038/157047b0
[41] Howard, R. A., et al. 2008, Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI), Space Science Reviews, 136, 67. https://doi.org/10.1007/s11214-008-9341-4
[42] Jansky, K. G. 1933, Radio Waves from Outside the Solar System, Nature, 132, 66. https://doi.org/10.1038/132066a0
[43] Kamide, Y., & Chian, A. C.-L. 2007, Handbook of the Solar-Terrestrial Environment
[44] Kasper, J. C., et al. 2016, Solar Wind Electrons Alphas and Protons (SWEAP) Investigation: Design of the Solar Wind and Coronal Plasma Instrument Suite for Solar Probe Plus, Space Science Reviews, 204, 131. https://doi.org/10.1007/s11214-015-0206-3
[45] Kim, E.-H., Cairns, I. H., & Robinson, P. A. 2007, Extraordinary-Mode Radiation Produced by Linear-Mode Conversion of Langmuir Waves, Physical Review Letters, 99, 015003. https://doi.org/10.1103/PhysRevLett.99.015003
[46] Kirk, J. G., Melrose, D. B., Melrose, D. B., Priest, E. R., Benz, A. O., Courvoisier, T., & Astronomie, S. G. f. A. u. 1994, Plasma Astrophysics (Springer-Verlag)
[47] Kontar, E. P., et al. 2017, Imaging spectroscopy of solar radio burst fine structures, Nature Communications, 8, 1515. https://doi.org/10.1038/s41467-017-01307-8
[48] Krucker, S., Kontar, E. P., Christe, S., Glesener, L., & Lin, R. P. 2011, Electron Acceleration Associated with Solar Jets, The Astrophysical Journal, 742, 82. https://doi.org/10.1088/0004-637x/742/2/82
[49] Krupar, V., et al. 2018, Interplanetary Type III Bursts and Electron Density Fluctuations in the Solar Wind, The Astrophysical Journal, 857, 82. https://doi.org/10.3847/1538-4357/aab60f
[50] Krupar, V., et al. 2014, Statistical Survey of Type III Radio Bursts at Long Wavelengths Observed by the Solar TErrestrial RElations Observatory (STEREO)/ Waves Instruments: Radio Flux Density Variations with Frequency, Solar Physics, 289, 3121. https://doi.org/10.1007/s11207-014-0522-x
[51] Krupar, V., et al. 2020, Density Fluctuations in the Solar Wind Based on Type III Radio Bursts Observed by Parker Solar Probe, The Astrophysical Journal Supplement Series, 246. https://doi.org/10.3847/1538-4365/ab65bd
[52] Kundu, M. R. 1965, Solar radio astronomy (New York: Interscience Publication)
[53] Larosa, A., et al. 2022, Langmuir-Slow Extraordinary Mode Magnetic Signature Observations with Parker Solar Probe, The Astrophysical Journal, 927, 95. https://doi.org/10.3847/1538-4357/ac4e85
[54] Leblanc, Y., Dulk, G. A., & Hoang, S. 1995, The low radio frequency limit of solar type III bursts: Ulysses observations in and out of the ecliptic, Geophysical Research Letters, 22, 3429. https://doi.org/10.1029/95gl01717
[55] Leblanc, Y., Dulk, G. A., Hoang, S., Bougeret, J.-L., & Robinson, P. A. 1996, Type III radio bursts observed by ULYSSES pole to pole, and simultaneously by wind, Astronomy and Astrophysics, 316, 406.
[56] Lecacheux, A. 2011. in Planetary, Solar and Heliospheric Radio Emissions (PRE VII), Direction Finding and Polarization Measurements of SKR, eds. H. O. Rucker, W. S. Kurth, P. Louarn, & G. Fischer, 13
[57] Lemen, J. R., et al. 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO), Solar Physics, 275, 17. https://doi.org/10.1007/s11207-011-9776-8
[58] Leske, R. A., et al. 2020, Observations of the 2019 April 4 Solar Energetic Particle Event at the Parker Solar Probe, The Astrophysical Journal Supplement Series, 246, 35. https://doi.org/10.3847/1538-4365/ab5712
[59] Lodge, O. 1900, Signalling Across Space Without Wires: Being a Description of the Work of Hertz & His Successors (United Kingdom: "The Electrician" Printing and Publishing Company)
[60] Ma, B., Chen, L., Wu, D., Pulupa, M., & Bale, S. D. 2022, Discrepancy between the Low-frequency Cutoffs of Type III Radio Bursts Based on Simultaneous Observations by WIND and PSP, The Astrophysical Journal Letters, 932, L26. https://doi.org/10.3847/2041-8213/ac7525
[61] Ma, Y., Xie, R.-x., Zheng, X.-m., Wang, M., & Yi-hua, Y. 2012, A Statistical Analysis of the Type-III Bursts in Centimeter and Decimeter Wavebands, Chinese Astronomy and Astrophysics, 36, 175. https://doi.org/10.1016/j.chinastron.2012.04.008
[62] Mann, G., Jansen, F., MacDowall, R. J., Kaiser, M. L., & Stone, R. G. 1999, A heliospheric density model and type III radio bursts, Astronomy and Astrophysics, 348, 614.
[63] McCauley, P. I., Cairns, I. H., White, S. M., Mondal, S., Lenc, E., Morgan, J., & Oberoi, D. 2019, The Low-Frequency Solar Corona in Circular Polarization, Solar Physics, 294, 106. https://doi.org/10.1007/s11207-019-1502-y
[64] McComas, D. J., et al. 2016, Integrated Science Investigation of the Sun (ISIS): Design of the Energetic Particle Investigation, Space Science Reviews, 204, 187. https://doi.org/10.1007/s11214-014-0059-1
[65] Melrose, D. B. 2006, Depolarization of Radio Bursts Due to Reflection off Sharp Boundaries in the Solar Corona, The Astrophysical Journal, 637, 1113. https://doi.org/10.1086/498499
[66] Melrose, D. B. 2017, Coherent emission mechanisms in astrophysical plasmas, Reviews of Modern Plasma Physics, 1, 5. https://doi.org/10.1007/s41614-017-0007-0
[67] Mitchell, J. G., et al. 2020, Small Electron Events Observed by Parker Solar Probe/IS⊙IS during Encounter 2, The Astrophysical Journal, 902, 20. https://doi.org/10.3847/1538-4357/abb2a4
[68] Moncuquet, M., et al. 2020, First In Situ Measurements of Electron Density and Temperature from Quasi-thermal Noise Spectroscopy with Parker Solar Probe/FIELDS, The Astrophysical Journal Supplement Series, 246, 44. https://doi.org/10.3847/1538-4365/ab5a84
[69] Morosan, D. E., & Gallagher, P. T. 2017. in Planetary Radio Emissions VIII, Characteristics of type III radio bursts and solar S bursts, eds. G. Fischer, G. Mann, M. Panchenko, & P. Zarka, 357
[70] Morosan, D. E., Kilpua, E. K. J., Carley, E. P., & Monstein, C. 2019, Variable emission mechanism of a Type IV radio burst, Astronomy and Astrophysics, 623, A63. https://doi.org/10.1051/0004-6361/201834510
[71] Morosan, D. E., et al. 2022, Exploring the Circular Polarisation of Low–Frequency Solar Radio Bursts with LOFAR, Solar Physics, 297. https://doi.org/10.1007/s11207-022-01976-9
[72] Musset, S., et al. 2021, Simulations of radio-wave anisotropic scattering to interpret type III radio burst data from Solar Orbiter, Parker Solar Probe, STEREO, and Wind, Astronomy and Astrophysics, 656, A34. https://doi.org/10.1051/0004-6361/202140998
[73] Ogawara, Y., et al. 1991, The SOLAR-A Mission - An Overview, Solar Physics, 136, 1. https://doi.org/10.1007/bf00151692
[74] Pesnell, W. D., Thompson, B. J., & Chamberlin, P. C. 2012, The Solar Dynamics Observatory (SDO), Solar Physics, 275, 3. https://doi.org/10.1007/s11207-011-9841-3
[75] Pick, M. 2005, in Solar and Space Weather Radiophysics: Current Status and Future Developments, eds. D. E. Gary, & C. U. Keller (Dordrecht: Springer Netherlands), 17
[76] Pulupa, M., et al. 2020, Statistics and Polarization of Type III Radio Bursts Observed in the Inner Heliosphere, The Astrophysical Journal Supplement Series, 246. https://doi.org/10.3847/1538-4365/ab5dc0
[77] Pulupa, M., et al. 2017, The Solar Probe Plus Radio Frequency Spectrometer: Measurement requirements, analog design, and digital signal processing, Journal of Geophysical Research (Space Physics), 122, 2836. https://doi.org/10.1002/2016ja023345
[78] Rahman, M. M., Cairns, I. H., & McCauley, P. I. 2020, Spectropolarimetric Imaging of Metric Type III Solar Radio Bursts, Solar Physics, 295, 51. https://doi.org/10.1007/s11207-020-01616-0
[79] Raouafi, N. E., et al. 2023, Parker Solar Probe: Four Years of Discoveries at Solar Cycle Minimum, Space Science Reviews, 219, 8. https://doi.org/10.1007/s11214-023-00952-4
[80] Reames, D. V., von Rosenvinge, T. T., & Lin, R. P. 1985, Solar He-3-rich events and nonrelativistic electron events - A new association, The Astrophysical Journal, 292, 716. https://doi.org/10.1086/163203
[81] Reber, G. 1944, Cosmic Static, The Astrophysical Journal, 100, 279. https://doi.org/10.1086/144668
[82] Reid, H. A. S., & Kontar, E. P. 2015, Stopping frequency of type III solar radio bursts in expanding magnetic flux tubes, Astronomy and Astrophysics, 577, A124. https://doi.org/10.1051/0004-6361/201425309
[83] Reid, H. A. S., & Kontar, E. P. 2017, Imaging spectroscopy of type U and J solar radio bursts with LOFAR, Astronomy & Astrophysics, 606, A141. https://doi.org/10.1051/0004-6361/201730701
[84] Reid, H. A. S., & Kontar, E. P. 2018, Solar type III radio burst time characteristics at LOFAR frequencies and the implications for electron beam transport, Astronomy and Astrophysics, 614, A69. https://doi.org/10.1051/0004-6361/201732298
[85] Reid, H. A. S., & Ratcliffe, H. 2014, A review of solar type III radio bursts, Research in Astronomy and Astrophysics, 14, 773. https://doi.org/10.1088/1674-4527/14/7/003
[86] Reiner, M. J., Fainberg, J., Kaiser, M. L., & Bougeret, J. L. 2007, Circular Polarization Observed in Interplanetary Type III Radio Storms, Solar Physics, 241, 351. https://doi.org/10.1007/s11207-007-0277-8
[87] Reiner, M. J., & Kaiser, M. L. 1999, High-frequency type II radio emissions associated with shocks driven by coronal mass ejections, Journal of Geophysical Research, 104, 16979. https://doi.org/10.1029/1999ja900143
[88] Robinson, P. A., & Cairns, I. H. 1998, Fundamental and Harmonic Emission in Type III Solar Radio Bursts - I. Emission at a Single Location or Frequency, Solar Physics, 181, 363. https://doi.org/10.1023/a:1005018918391
[89] Robinson, P. A., Cairns, I. H., & Gurnett, D. A. 1993, Clumpy Langmuir Waves in Type III Radio Sources: Comparison of Stochastic-Growth Theory with Observations, The Astrophysical Journal, 407, 790. https://doi.org/10.1086/172560
[90] Schou, J., et al. 2012, Design and Ground Calibration of the Helioseismic and Magnetic Imager (HMI) Instrument on the Solar Dynamics Observatory (SDO), Solar Physics, 275, 229. https://doi.org/10.1007/s11207-011-9842-2
[91] Singh, Y. P., & Badruddin. 2006, Statistical considerations in superposed epoch analysis and its applications in space research, Journal of Atmospheric and Solar-Terrestrial Physics, 68, 803. https://doi.org/10.1016/j.jastp.2006.01.007
[92] Stanislavsky, A. A., Bubnov, I. N., Koval, A. A., & Yerin, S. N. 2021, Parker Solar Probe detects solar radio bursts related with a behind–the–limb active region, Astronomy & Astrophysics, 657. https://doi.org/10.1051/0004-6361/202141984
[93] Stewart, R. T., & Labrum, N. R. 1972, Meter-wavelength observations of the solar radio burst storm of August 17 22, 1968, Solar Physics, 27, 192. https://doi.org/10.1007/bf00151783
[94] Thejappa, G., & MacDowall, R. J. 2021, Observational Evidence for Beat Phenomenon in Complex Solar Type III Radio Bursts, The Astrophysical Journal, 912, 61. https://doi.org/10.3847/1538-4357/abee74
[95] Thompson, W. T. 2006, Coordinate systems for solar image data, Astronomy and Astrophysics, 449, 791. https://doi.org/10.1051/0004-6361:20054262
[96] Thompson, W. T., et al. 2003. in Innovative Telescopes and Instrumentation for Solar Astrophysics, COR1 inner coronagraph for STEREO-SECCHI, eds. S. L. Keil, & S. V. Avakyan, 1
[97] Treumann, R. A. 2006, The electron–cyclotron maser for astrophysical application, The Astronomy and Astrophysics Review, 13, 229. https://doi.org/10.1007/s00159-006-0001-y
[98] van Haarlem, M. P., et al. 2013, LOFAR: The LOw-Frequency ARray, Astronomy and Astrophysics, 556, A2. https://doi.org/10.1051/0004-6361/201220873
[99] Vecchio, A., et al. 2021, Solar Orbiter/RPW antenna calibration in the radio domain and its application to type III burst observations, Astronomy and Astrophysics, 656, A33. https://doi.org/10.1051/0004-6361/202140988
[100] Vidojevic, S., & Maksimovic, M. 2009, Preliminary Analysis of Type III Radio Bursts from Stereo/Waves Data, Publications de l′Observatoire Astronomique de Beograd, 86, 287.
[101] Vourlidas, A., et al. 2016, The Wide-Field Imager for Solar Probe Plus (WISPR), Space Science Reviews, 204, 83. https://doi.org/10.1007/s11214-014-0114-y
[102] Wang, M., Duan, C. C., Xie, R. X., & Yan, Y. H. 2003, Highly polarized Type III microwave bursts on 15 April 1998, Solar Physics, 212, 401. https://doi.org/10.1023/a:1022939203483
[103] Weiss, L. A. A., & Stewart, R. T. 1965, Solar radio bursts of spectral type V, Australian Journal of Physics, 18, 143. https://doi.org/10.1071/ph650143
[104] West, M. J., et al. 2023, Defining the Middle Corona, Solar Physics, 298, 78. https://doi.org/10.1007/s11207-023-02170-1
[105] White, S. 2007, Solar Radio Bursts and Space Weather, Asian J Phys, 16.
[106] White, S. M., & Kundu, M. R. 1997, Radio Observations of Gyroresonance Emission from Coronal Magnetic Fields, Solar Physics, 174, 31. https://doi.org/10.1023/A:1004975528106
[107] Wild, J. P., & McCready, L. L. 1950, Observations of the Spectrum of High-Intensity Solar Radiation at Metre Wavelengths. I. The Apparatus and Spectral Types of Solar Burst Observed, Australian Journal of Scientific Research A Physical Sciences, 3, 387. https://doi.org/10.1071/ch9500387
[108] Woods, T. N., et al. 2012, Extreme Ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO): Overview of Science Objectives, Instrument Design, Data Products, and Model Developments, Solar Physics, 275, 115. https://doi.org/10.1007/s11207-009-9487-6
[109] Zhang, J., Reid, H. A. S., Krupar, V., Zucca, P., Dabrowski, B., & Krankowski, A. 2023, Deriving Large Coronal Magnetic Loop Parameters Using LOFAR J Burst Observations, Solar Physics, 298, 7. https://doi.org/10.1007/s11207-022-02096-0
[110] Zhang, P. J., Wang, C. B., & Ye, L. 2018, A type III radio burst automatic analysis system and statistic results for a half solar cycle with Nançay Decameter Array data, Astronomy & Astrophysics, 618, A165. https://doi.org/10.1051/0004-6361/201833260
[111] Zheleznyakov, V. V., & Zaitsev, V. V. 1968, The Origin of Type-V Solar Radio Bursts, Soviet Astronomy, 12, 14.
[112] Zlobec, P., & Thejappa, G. 1987, Type II Burst High Time Resolution and Polarization Characteristics at Frequencies Higher than 200 MHz, Hvar Observatory Bulletin, 11, 111.
指導教授 楊雅惠(Ya-Hui Yang) 審核日期 2023-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明