博碩士論文 110821610 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.137.189.57
姓名 伊曼娜(Zaida Nur Imana)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 結合TLR9與STING促進劑協同激活免疫反應並增強頭頸癌的抗腫瘤作用
(Combination of TLR9 and STING Agonists Cooperatively Activates Immune Responses and Enhances Antitumor Effect on Head and Neck Cancer)
相關論文
★ Optimized CpG-oligodeoxynucleotide sequence for activation of Toll-like receptor 9 from companion animals
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-1-29以後開放)
摘要(中) 頭頸鱗狀細胞癌(HNSCC)主要包括口腔、咽、喉、鼻腔和唾液腺黏膜上皮的腫瘤等。該癌症的發生率在全球常見癌症中排名第六,凸顯其需要進一步開發新療法以增加患者康復和存活率的需求。模式識別受體(PRRs)的活化會引發先天免疫反應,隨後引發適應性免疫反應。由於其有效的免疫刺激活性有助於消滅癌細胞,因此不同的 PRR 刺激劑正在被研究以用於癌症免疫療法。為了研究體內的免疫機制和抗腫瘤功能,我們利用原位同基因頭頸癌小鼠模型。我們探討TLR9 刺激劑和 STING 刺激劑單獨或合併使用的免疫反應和抗腫瘤活性。在脾臟細胞、骨髓分化的巨噬細胞 (BMDM) 和樹突細胞 (BMDC) 中,CpG-2722 的刺激會增加 Th1 和 Th17 細胞因子的表現量,但不影響Th2 相關細胞因子的表現。與 CpG-2722 相比,STING 刺激劑顯示出誘導 Th1 和 Th17 表現量較低,但 Th2 細胞因子表現量較高的特性。然而,合併CpG-2722 與不同 STING 刺激劑可以增強 Th1 和 Th17,同時減少Th2 細胞激素的表現。CpG-2722 和 2’3’-c-di-AMP 能有效誘導細胞免疫反應,包括增加 IFN-γ、TNF-α、IL-1β、IL-6 和 IL-23A 細胞因子表現與樹突細胞成熟標記CD86、CD80、CD40和CCR7。在這些體外的實驗中,結合兩者皆能顯示出協同作用。此外, 給予CpG-2722 和 2’3’-c-di-AMP 均能抑制頭頸癌腫瘤生長。與單獨處理相比,合併兩種刺激劑可以更有效的抑制腫瘤生長。在腫瘤微環境中,CpG-2722和2’3’-c-di-AMP合併治療協同促進IFN-γ、IL-12、IL-1β和type I IFN細胞因子的產生以及白血球、CD4和CD8 T細胞的累積、cDC和pDC的成熟以及增加M1腫瘤相關的巨噬細胞。綜合上述結果,我們認為在頭頸癌中,透過TLR9 和 STING 刺激劑的協同作用,可作為一種潛在的癌症免疫治療劑。
摘要(英) Head and neck squamous cell carcinoma (HNSCC) constitute a group of tumors originating from mucosal epithelium in the oral cavity, pharynx, larynx, nasal cavity, and salivary glands. Globally, it ranks as the sixth most common cancer, highlighting the pressing need for the development of new therapies to enhance recovery and survival rates in patients. Activation of pattern recognition receptors (PRRs) initiates innate immune responses, subsequently triggering adaptive immune responses. Given their potent immune stimulatory properties that aid in the eradication of cancer cells, various PRR agonists are being investigated for cancer immune therapies. To investigate the immune mechanism and antitumor function in vivo, we utilized an orthotopic syngeneic head and neck cancer mouse model. We investigated the immune response and antitumor activities of TLR9 agonist and STING agonists, both individually and in combination. In splenocytes, bone marrow-derived macrophages (BMDMs) and bone marrow-derived dendritic cells (BMDCs), CpG-2722 showed increased expression of Th1 and Th17 cytokines but not Th2 cytokines. STING agonists exhibited lower expression of Th1 and Th17 but higher expression of Th2 cytokines compared to CpG-2722. However, the combination of CpG-2722 with each STING agonist significantly enhanced Th1 and Th17 cytokine expressions while reducing Th2 cytokine expressions. CpG-2722 and 2’3’-c-di-AMP effectively induced cellular immune responses, including upregulation of IFN-γ, TNF-α, IL-1β, IL-6, and IL-23A cytokines expression, as well as maturation markers CD86, CD80, CD40, and CCR7 in DCs. Their combination demonstrated cooperative activity in vitro. Both CpG-2722 and 2’3’-c-di-AMP suppressed head and neck tumor growth, with their combination proving more effective than using these agonists alone. In the tumor microenvironment, the combined treatment of CpG-2722 and 2’3’-c-di-AMP cooperatively promoted the production of IFN-γ, IL-12, IL-1β, and type I IFN cytokines. Additionally, it led to the accumulation of leukocytes, CD4, and CD8 T cells, maturation of cDCs and pDCs, and reprogramming of tumor-associated macrophages into M1 macrophages. Thus, this finding indicates the potent cancer immunotherapy agent through the cooperative activation of TLR9 and STING agonists in head and neck cancer.
關鍵字(中) ★ 頭頸癌
★ TLR9 激動劑
★ STING 激動劑
★ 免疫反應
★ 腫瘤微環境
關鍵字(英) ★ Head and neck cancer
★ TLR9 agonist
★ STING agonist
★ immune response
★ tumor microenvironment
論文目次 中文摘要 i
ABSTRACT ii
ACKNOWLEDGMENT iii
TABLE OF CONTENTS iv
LIST OF FIGURES vi
ABBREVIATION viii
CHAPTER I INTRODUCTION 1
1.1 Head and Neck Cancer 1
1.2 Tumor microenvironment 2
1.3 Strategies for cancer immunotherapy 6
1.4 Pathogen Recognition Receptors (PRRs) 9
1.5 Toll-like Receptors 9 (TLR9) 11
1.6 Stimulator of Interferon Genes (STING) 13
1.7 Specific Aims 14
CHAPTER II MATERIALS AND METHODS 16
2.1 Animal care 16
2.2 Chemicals, reagents, and antibodies 16
2.3 Cell culture 16
2.4 Mouse splenocytes preparation 16
2.5 Mouse bone marrow-derived dendritic cells (BMDCs) and bone marrow-derived macrophages (BMDMs) preparation 17
2.6 Splenocyte conditioned medium (SCM) preparation 17
2.7 RNA Isolation 18
2.8 Reverse transcription-quantitative PCR (RT-qPCR) analysis 19
2.9 Syngeneic orthotopic animal model of head and neck cancer 19
2.10 Immunohistochemistry 20
2.11 Statistical analysis 20
CHAPTER III RESULTS 21
3.1 Induction of cytokine expression by CpG-2722 and STING agonists alone 21
3.2 Induction of cytokine expression by CpG-2722 and STING agonists in combination 21
3.3 Induction of cytokine expression by CpG-2722 and 2‘3’-c-di-AMP alone or in combination 22
3.4 Dendritic cell maturation induced by CpG-2722 and 2’3’-c-di-AMP alone and their combination 23
3.5 Macrophage polarization was not promoted by CpG-2722 and 2’3’-c-di-AMP alone or in combination 23
3.6 Antitumor activity of CpG-2722 and 2’3’-c-di-AMP alone 24
3.7 Cooperative antitumor activities of CpG-2722 and 2’3’-c-di-AMP on head and neck cancer 24
3.8 Combination of CpG-2722 and 2’3’-c-di-AMP promotes Th1 cytokines and suppress Th2 cytokines in tumor microenvironment 25
3.9 Combination of CpG-2722 and 2’3’-c-di-AMP promotes immune cell accumulation in the tumor microenvironment 25
3.10 M1 macrophage polarization induced by splenocyte conditioned medium from Cp-2722 and 2’3’-c-di-AMP combination. 26
CHAPTER IV DISCUSSION 28
CHAPTER V CONCLUSION 35
REFERENCES 36
APPENDIX 69
參考文獻 [1] Barsouk A, Aluru JS, Rawla P, Saginala K, Barsouk A. Epidemiology, Risk Factors, and Prevention of Head and Neck Squamous Cell Carcinoma. Medical Sciences. 11(42):1–13 (2023).
[2] Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 71(3):209–49 (2021).
[3] Gormley M, Creaney G, Schache A, Ingarfield K, Conway DI. Reviewing the epidemiology of head and neck cancer: definitions, trends, and risk factors. Br Dent J. 233(9):780–6 (2022).
[4] Keam SJ, Harper DM. Human Papillomavirus Types 16 and 18 Vaccine (Recombinant, AS04 Adjuvanted, Adsorbed) [CervarixTM]. Drugs. 68(3):359–72 (2008).
[5] Tomaić V. Functional roles of E6 and E7 oncoproteins in HPV-induced malignancies at diverse anatomical sites. Cancers (Basel). 8(95):1–22 (2016).
[6] Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE, Grandis JR. Head and neck squamous cell carcinoma. Nat Rev Dis Primers. 6(92):1–22 (2020).
[7] Goel B, Tiwari AK, Pandey RK, Singh AP, Kumar S, Sinha A, et al. Therapeutic approaches for the treatment of head and neck squamous cell carcinoma–An update on clinical trials. Transl Oncol. 21(101426):1-11 (2022).
[8] Anderson NM, Simon MC. The tumor microenvironment. Current Biology. 30(16):R921–5 (2020).
[9] Nishikawa H, Koyama S. Mechanisms of regulatory T cell infiltration in tumors: Implications for innovative immune precision therapies. J Immunother Cancer. 9(e002591):1–13 (2021).
[10] Catalán D, Mansilla MA, Ferrier A, Soto L, Oleinika K, Aguillón JC, et al. Immunosuppressive Mechanisms of Regulatory B Cells. Front Immunol. 12(611795):1–30 (2021).
[11] Jayasingam SD, Citartan M, Thang TH, Mat Zin AA, Ang KC, Ch’ng ES. Evaluating the Polarization of Tumor-Associated Macrophages into M1 and M2 Phenotypes in Human Cancer Tissue: Technicalities and Challenges in Routine Clinical Practice. Front Oncol. 9(1512):1–9 (2020).
[12] Shaul ME, Fridlender ZG. The dual role of neutrophils in cancer. Semin Immunol. 57(101582):1–13 (2021).
[13] Raskov H, Orhan A, Christensen JP, Gögenur I. Cytotoxic CD8+ T cells in cancer and cancer immunotherapy. Br J Cancer. 124(2):359–67 (2021).
[14] Speiser DE, Chijioke O, Schaeuble K, Münz C. CD4+ T cells in cancer. Nat Cancer. 4(3):317–29 (2023).
[15] Yuen GJ, Demissie E, Pillai S. B Lymphocytes and Cancer: A Love–Hate Relationship. Trends in Cancer. 2:747–57 (2016).
[16] Yoon SR, Kim TD, Choi I. Understanding of molecular mechanisms in natural killer cell therapy. Exp Mol Med. 47(e141):1–11 (2015).
[17] Li SY, Guo YL, Tian JW, Zhang HJ, Li RF, Gong P, et al. Anti-Tumor Strategies by Harnessing the Phagocytosis of Macrophages. Cancers (Basel). 15(2717):1–29 (2023).
[18] Avtenyuk NU, Visser N, Bremer E, Wiersma VR. The neutrophil: The underdog that packs a punch in the fight against cancer. Int J Mol Sci. 21(21):1–34 (2020).
[19] Marciscano AE, Anandasabapathy N. The role of dendritic cells in cancer and anti-tumor immunity. Semin Immunol. 52(101481):1–27 (2021).
[20] Li C, Xu X, Wei S, Jiang P, Xue L, Wang J. Tumor-associated macrophages: potential therapeutic strategies and future prospects in cancer. J Immunother Cancer. 9(e001341):1–22 (2021).
[21] Chen Y, Song Y, Du W, Gong L, Chang H, Zou Z. Tumor-associated macrophages: An accomplice in solid tumor progression. J Biomed Sci. 26(78):1-13 (2019).
[22] DeNardo DG, Ruffell B. Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol. 19(6):369–82 (2019).
[23] Arlauckas SP, Garren SB, Garris CS, Kohler RH, Oh J, Pittet MJ, et al. Arg1 expression defines immunosuppressive subsets of tumor-associated macrophages. Theranostics. 8(21):5842–54 (2018).
[24] Duan Z, Luo Y. Targeting macrophages in cancer immunotherapy. Signal Transduct Target Ther. 6(127):1–21 (2021).
[25] Li M, He L, Zhu J, Zhang P, Liang S. Targeting tumor-associated macrophages for cancer treatment. Cell Biosci. 12(85):1–13 (2022).
[26] Saito Y, Komori S, Kotani T, Murata Y, Matozaki T. The Role of Type-2 Conventional Dendritic Cells in the Regulation of Tumor Immunity. Cancers (Basel). 14(1976):1–16 (2022).
[27] Durai V, Murphy KM. Functions of Murine Dendritic Cells. Immunity. 45(4):719–36 (2016).
[28] Merad M, Sathe P, Helft J, Miller J, Mortha A. The dendritic cell lineage: Ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol. 31:563–604 (2013).
[29] Murphy TL, Murphy KM. Dendritic cells in cancer immunology. Cell Mol Immunol. 19(1):3–13 (2022).
[30] Collin M, Bigley V. Human dendritic cell subsets: an update. Immunology. 154(1):3–20 (2018).
[31] Washio K, Kotani T, Saito Y, Respatika D, Murata Y, Kaneko Y, et al. Dendritic cell SIRPα regulates homeostasis of dendritic cells in lymphoid organs. Genes to Cells. 20(6):451–63 (2015).
[32] Del Prete A, Salvi V, Soriani A, Laffranchi M, Sozio F, Bosisio D, et al. Dendritic cell subsets in cancer immunity and tumor antigen sensing. Cell Mol Immunol. 20(5):432–47 (2023).
[33] Carreno BM, Collins M. The B7 family of ligands and its receptors: New pathways for costimulation and inhibition of immune responses. Annual Review of Immunology. 20:29–53 (2002).
[34] Vasu C, Wang A, Gorla SR, Kaithamana S, Prabhakar BS, Holterman MJ. CD80 and CD86 C domains play an important role in receptor binding and co-stimulatory properties. Int Immunol. 15(2):167–75 (2003).
[35] Mantovani A, Allavena P, Marchesi F, Garlanda C. Macrophages as tools and targets in cancer therapy. Nat Rev Drug Discov. 21(11):799–820 (2022).
[36] Sokol CL, Luster AD. The chemokine system in innate immunity. Cold Spring Harb Perspect Biol. 7(5):1–20 (2015).
[37] Loschko J, Schlitzer A, Dudziak D, Drexler I, Sandholzer N, Bourquin C, et al. Antigen Delivery to Plasmacytoid Dendritic Cells via BST2 Induces Protective T Cell-Mediated Immunity. The Journal of Immunology. 186(12):6718–25 (2011).
[38] Noubade R, Majri-Morrison S, Tarbell K V. Beyond CDC1: Emerging roles of DC crosstalk in cancer immunity. Front Immunol. 10(1014):1–13 (2019).
[39] Fu C, Peng P, Loschko J, Feng L, Pham P, Cui W, et al. Plasmacytoid dendritic cells cross-prime naive CD8 T cells by transferring antigen to conventional dendritic cells through exosomes. PNAS. 117(38):23730–41 (2020).
[40] Basu A, Ramamoorthi G, Albert G, Gallen C, Beyer A, Snyder C, et al. Differentiation and Regulation of TH Cells: A Balancing Act for Cancer Immunotherapy. Front Immunol. 12(669474):1-25 (2021).
[41] Nishimura T, Iwakabe K, Sekimoto M, Ohmi Y, Yahata T, Nakui M, et al. Distinct Role of Antigen-specific T Helper Type 1 (Th1) and Th2 Cells in Tumor Eradication In Vivo. J Exp Med. 190(5):617–27 (1999).
[42] Silva RCMC, Lopes MF, Travassos LH. Distinct T helper cell-mediated antitumor immunity: T helper 2 cells in focus. Cancer Pathogenesis and Therapy. 1(1):76–86 (2023).
[43] Hung K, Hayashi R, Lafond-Walker A, Lowenstein C, Pardoll D, Levitsky H. The Central Role of CD4 T Cells in the Antitumor Immune Response. J Exp Med. 188(12):2357–68 (1998).
[44] Nishimura T, Nakui M, Sato M, Iwakabe K, Kitamura H, Sekimoto M, et al. The critical role of Th1-dominant immunity in tumor immunology. Cancer Chemother Pharmacol. 46:52–61 (2000).
[45] Segura E, Touzot M, Bohineust A, Cappuccio A, Chiocchia G, Hosmalin A, et al. Human Inflammatory Dendritic Cells Induce Th17 Cell Differentiation. Immunity. 38(2):336–48 (2013).
[46] Bose A, Chakraborty T, Chakraborty K, Pal S, Baral R. mononuclear cells from head and neck squamous cell carcinoma patients. Cancer Immun. 8(12):10 (2008).
[47] Temizoz B, Kuroda E, Kobiyama K, Aoshi T, Ishii KJ. Novel adjuvants. In: Immunotherapy of Cancer: An Innovative Treatment Comes of Age. Springer Japan. 17:247–60 (2016).
[48] Zahavi D, Weiner L. Monoclonal antibodies in cancer therapy. Antibodies. 9(3):1–20 (2020).
[49] Liu L, Chen J. Therapeutic antibodies for precise cancer immunotherapy: Current and future perspectives. Medical Review. 2(6):555–69 (2022).
[50] Wang L, Geng H, Liu Y, Liu L, Chen Y, Wu F, et al. Hot and cold tumors: Immunological features and the therapeutic strategies. MedComm (Beijing). 4(e343):1–21 (2023).
[51] Ni L, Lu J. Interferon gamma in cancer immunotherapy. Cancer Med. 7(9):4509–16 (2018).
[52] Das S, Johnson DB. Immune-related adverse events and anti-tumor efficacy of immune checkpoint inhibitors. J Immunother Cancer. 7(306):1–11 (2019).
[53] Bashor CJ, Hilton IB, Bandukwala H, Smith DM, Veiseh O. Engineering the next generation of cell-based therapeutics. Nat Rev Drug Discov. 21(9):655–75 (2022).
[54] Larson RC, Maus M V. Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nat Rev Cancer. 21(3):145–61 (2021).
[55] Maalej KM, Merhi M, Inchakalody VP, Mestiri S, Alam M, Maccalli C, et al. CAR-cell therapy in the era of solid tumor treatment: current challenges and emerging therapeutic advances. Mol Cancer. 22(20):1-54 (2023).
[56] Conlon KC, Miljkovic MD, Waldmann TA. Cytokines in the Treatment of Cancer. Journal of Interferon and Cytokine Research. 39(1):6–21 (2019).
[57] Berraondo P, Sanmamed MF, Ochoa MC, Etxeberria I, Aznar MA, Pérez-Gracia JL, et al. Cytokines in clinical cancer immunotherapy. Br J Cancer. 120(1):6–15 (2019).
[58] Sooreshjani M, Tripathi S, Dussold C, Najem H, de Groot J, Lukas R V., et al. The Use of Targeted Cytokines as Cancer Therapeutics in Glioblastoma. Cancers. 15(3739):1-17 (2023).
[59] Atallah-Yunes SA, Robertson MJ. Cytokine Based Immunotherapy for Cancer and Lymphoma: Biology, Challenges and Future Perspectives. Front Immunol. 13(872010):1–10 (2022).
[60] Lin MJ, Svensson-Arvelund J, Lubitz GS, Marabelle A, Melero I, Brown BD, et al. Cancer vaccines: the next immunotherapy frontier. Nat Cancer. 3(8):911–26 (2022).
[61] Thomas S, Prendergast GC. Cancer vaccines: A brief overview. In: Methods in Molecular Biology. Humana Press Inc. 43:755–61 (2016).
[62] Lorentzen CL, Haanen JB, Met Ö, Svane IM. Clinical advances and ongoing trials on mRNA vaccines for cancer treatment. Lancet Oncol. 23(10):e450–8 (2022).
[63] Awate S, Babiuk LA, Mutwiri G. Mechanisms of action of adjuvants. Front Immunol. 4(114):1–10 (2013).
[64] Temizoz B, Kuroda E, Ishii KJ. Vaccine adjuvants as potential cancer immunotherapeutics. Int Immunol. 28(7):329–38 (2016).
[65] Janeway CA, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 20:197–216 (2002).
[66] Akira S. Innate immunity and adjuvants. Philosophical Transactions of the Royal Society B: Biological Sciences. 366(1579):2748–55 (2011).
[67] Ong GH, Lian BSX, Kawasaki T, Kawai T. Exploration of Pattern Recognition Receptor Agonists as Candidate Adjuvants. Front Cell Infect Microbiol. 11(745016):1–17 (2021).
[68] Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 124(4):783–801 (2006).
[69] Borg NA. RIG-I like receptors. WikiJournal of Science. 2(1):1–4 (2019).
[70] Kawai T, Akira S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol. 21(4):317–37 (2009).
[71] Li X, Ranjith-Kumar CT, Brooks MT, Dharmaiah S, Herr AB, Kao C, et al. The RIG-I-like receptor LGP2 recognizes the termini of double-stranded RNA. Journal of Biological Chemistry. 284(20):13881–91 (2009).
[72] Yan H, Kamiya T, Suabjakyong P, Tsuji NM. Targeting C-type lectin receptors for cancer immunity. Front Immunol. 6(408):1–9 (2015).
[73] Li TH, Liu L, Hou YY, Shen SN, Wang TT. C-type lectin receptor-mediated immune recognition and response of the microbiota in the gut. Gastroenterol Rep (Oxf). 7(5):312–21 (2019).
[74] Shaw MH, Reimer T, Kim YG, Nuñez G. NOD-like receptors (NLRs): bona fide intracellular microbial sensors. Curr Opin Immunol. 20(4):377–82 (2008).
[75] Strober W, Murray PJ, Kitani A, Watanabe T. Signalling pathways and molecular interactions of NOD1 and NOD2. Nat Rev Immunol. 6(1):9–20 (2006).
[76] Jacobs SR, Damania B. NLRs, inflammasomes, and viral infection. J Leukoc Biol. 92(3):469–77 (2012).
[77] Schroder K, Tschopp J. The Inflammasomes. Cell. 140(6):821–32 (2010).
[78] Franchi L, Warner N, Viani K, Nuñez G. Function of Nod-like receptors in microbial recognition and host defense. Immunol Rev. 227(1):106–28 (2009).
[79] Jiang M, Chen P, Wang L, Li W, Chen B, Liu Y, et al. CGAS-STING, an important pathway in cancer immunotherapy. J Hematol Oncol. 13(18):1–11 (2020).
[80] Chuang TH, Lee J, Kline L, Mathison JC, Ulevitch RJ. Toll-like receptor 9 mediates CpG-DNA signaling. J Leukoc Biol. 71(3):538–44 (2002).
[81] Krieg AM. Therapeutic potential of toll-like receptor 9 activation. Nat Rev Drug Discov. 5(6):471–84 (2006).
[82] Wagner H. The immunobiology of the TLR9 subfamily. Trends Immunol. 25(7):381–6 (2004).
[83] Chuang YC, Tseng JC, Huang LR, Huang CM, Huang CYF, Chuang TH. Adjuvant Effect of Toll-Like Receptor 9 Activation on Cancer Immunotherapy Using Checkpoint Blockade. Front Immunol. 11(1075):1–14 (2020).
[84] Karapetyan L, Luke JJ, Davar D. Toll-like receptor 9 agonists in cancer. Onco Targets Ther. 13:10039–61 (2020).
[85] Yeh DW, Lai CY, Liu YL, Lu CH, Tseng PH, Yuh CH, et al. CpG-oligodeoxynucleotides developed for grouper toll-like receptor (TLR) 21s effectively activate mouse and human TLR9s mediated immune responses. Sci Rep. 7(17297):1–10 (2017).
[86] Chen YL, Liu KJ, Jang CW, Hsu CC, Yen YC, Liu YL, et al. Erk activation modulates cancer stemness and motility of a novel mouse oral squamous cell carcinoma cell line. Cancers (Basel). 12(61):1–22 (2020).
[87] Tseng JC, Yang JX, Liu YL, Su YW, Lee AYL, Chen YW, et al. Sharpening up tumor microenvironment to enhance the efficacy of immune checkpoint blockade on head and neck cancer using a CpG-oligodeoxynucleotide. Cancer Immunology, Immunotherapy. 71(5):1115–28 (2022).
[88] Tseng JC, Yang JX, Lee CY, Lo CF, Liu YL, Zhang MM, et al. Induction of Immune Responses and Phosphatidylserine Exposure by TLR9 Activation Results in a Cooperative Antitumor Effect with a Phosphatidylserine-targeting Prodrug. Int J Biol Sci. 19(9):2648–62 (2023).
[89] Yang JX, Tseng JC, Tien CF, Lee CY, Liu YL, Lin JJ, et al. TLR9 and STING agonists cooperatively boost the immune response to SARS-CoV-2 RBD vaccine through an increased germinal center B cell response and reshaped T helper responses. Int J Biol Sci. 19(9):2897–913 (2023).
[90] Danilchanka O, Mekalanos JJ. Cyclic dinucleotides and the innate immune response. Cell. 154(5):962–70 (2013).
[91] Kato K, Omura H, Ishitani R, Nureki O. Cyclic GMP-AMP as an Endogenous Second Messenger in Innate Immune Signaling by Cytosolic DNA. Annu Rev Biochem. 86:541–66 (2017).
[92] Mudgal S, Manikandan K, Mukherjee A, Krishnan A, Sinha KM. Cyclic di-AMP: Small molecule with big roles in bacteria. Microb Pathog. 161(105264):1–8 (2021).
[93] Opoku-Temeng C, Zhou J, Zheng Y, Su J, Sintim HO. Cyclic dinucleotide (c-di-GMP, c-di-AMP, and cGAMP) signalings have come of age to be inhibited by small molecules. Chemical Communications. 52(60):9327–42 (2016).
[94] Zhu Y, An X, Zhang X, Qiao Y, Zheng T, Li X. STING: A master regulator in the cancer-immunity cycle. Mol Cancer. 18(152):1–15 (2019).
[95] Abe T, Barber GN. Cytosolic-DNA-Mediated, STING-Dependent Proinflammatory Gene Induction Necessitates Canonical NF-κB Activation through TBK1. J Virol. 88(10):5328–41 (2014).
[96] Chen H, Sun H, You F, Sun W, Zhou X, Chen L, et al. Activation of STAT6 by STING is critical for antiviral innate immunity. Cell. 147(2):436–46 (2011).
[97] Dubensky TW, Kanne DB, Leong ML. Rationale, progress and development of vaccines utilizing STING-activating cyclic dinucleotide adjuvants. Ther Adv Vaccines. 1(4):131–43 (2013).
[98] Couillin I, Riteau N. STING Signaling and Sterile Inflammation. Front Immunol. 12(753789):1–15 (2021).
[99] Arwert EN, Milford EL, Rullan A, Derzsi S, Hooper S, Kato T, et al. STING and IRF3 in stromal fibroblasts enable sensing of genomic stress in cancer cells to undermine oncolytic viral therapy. Nat Cell Biol. 22(7):758–66 (2020).
[100] Corrales L, Glickman LH, McWhirter SM, Kanne DB, Sivick KE, Katibah GE, et al. Direct Activation of STING in the Tumor Microenvironment Leads to Potent and Systemic Tumor Regression and Immunity. Cell Rep. 11(7):1018–30 (2015).
[101] Weiss JM, Guérin M V., Regnier F, Renault G, Galy-Fauroux I, Vimeux L, et al. The STING agonist DMXAA triggers a cooperation between T lymphocytes and myeloid cells that leads to tumor regression. Oncoimmunology. 6(10):1–11 (2017).
[102] Jing W, McAllister D, Vonderhaar EP, Palen K, Riese MJ, Gershan J, et al. STING agonist inflames the pancreatic cancer immune microenvironment and reduces tumor burden in mouse models. J Immunother Cancer. 7(115):1–18 (2019).
[103] Cheng H, Xu Q, Lu X, Yuan H, Li T, Zhang Y, et al. Activation of STING by cGAMP Regulates MDSCs to Suppress Tumor Metastasis via Reversing Epithelial-Mesenchymal Transition. Front Oncol. 10(896):1–14 (2020).
[104] Suresh M, Li B, Huang X, Korolowicz KE, Murreddu MG, Gudima SO, et al. Agonistic Activation of Cytosolic DNA Sensing Receptors in Woodchuck Hepatocyte Cultures and Liver for Inducing Antiviral Effects. Front Immunol. 12(745802):1–14 (2021).
[105] Kwissa M, Kasturi SP, Pulendran B. The science of adjuvants. Expert Rev Vaccines. 6(5):673–84 (2007).
[106] Temizoz B, Kuroda E, Ohata K, Jounai N, Ozasa K, Kobiyama K, et al. TLR9 and STING agonists synergistically induce innate and adaptive type-II IFN. Eur J Immunol. 45(4):1159–69 (2015).
[107] Sallets A, Sagiv Barfi I, Levy R. Activity of a Sting and a TLR9 Agonist As an “in Situ Therapeutic Vaccination” Against Lymphomas. Blood. 128(22):48–48 (2016).
[108] Tan TT, Coussens LM. Humoral immunity, inflammation, and cancer. Curr Opin Immunol. 19(2):209–16 (2007).
[109] Akbulut GD, Özkazanç D, Esendağli G. Th1 cells in cancer-associated inflammation. Turkish Journal of Biology. 41(1):20–30 (2017).
[110] Zuazo M, Arasanz H, Bocanegra A, Fernandez G, Chocarro L, Vera R, et al. Systemic CD4 Immunity as a Key Contributor to PD-L1/PD-1 Blockade Immunotherapy Efficacy. Front Immunol. 11(586907):1–10 (2020).
[111] Al-Ashmawy GMZ. Dendritic Cell Subsets, Maturation and Function. In: Dendritic Cells. InTech. 2:11–24 (2018).
[112] Hong W, Yang B, He Q, Wang J, Weng Q. New Insights of CCR7 Signaling in Dendritic Cell Migration and Inflammatory Diseases. Front Pharmacol. 13(841687):1–14 (2022).
[113] Jayant K, Habib N, Huang KW, Warwick J, Arasaradnam R. Recent advances: The imbalance of immune cells and cytokines in the pathogenesis of hepatocellular carcinoma. Diagnostics. 10(5):1–17 (2020).
[114] Salah A, Li Y, Wang H, Qi N, Wu Y. Macrophages as a Double-Edged Weapon: The Use of Macrophages in Cancer Immunotherapy and Understanding the Cross-Talk between Macrophages and Cancer. DNA Cell Biol. 40(3):429–40 (2021).
[115] Yuan R, Li S, Geng H, Wang X, Guan Q, Li X, et al. Reversing the polarization of tumor-associated macrophages inhibits tumor metastasis. Int Immunopharmacol. 49:30–7 (2017).
[116] Ying W, Cheruku PS, Bazer FW, Safe SH, Zhou B. Investigation of macrophage polarization using bone marrow derived macrophages. J Vis Exp. 76:1–8 (2013).
[117] Elmusrati A, Wang J, Wang CY. Tumor microenvironment and immune evasion in head and neck squamous cell carcinoma. Int J Oral Sci. 13(24):1–11 (2021).
[118] Brubaker SW, Bonham KS, Zanoni I, Kagan JC. Innate immune pattern recognition: A cell biological perspective. Annu Rev Immunol. 33:257–90 (2015).
[119] Zhang Y, Xue W, Xu C, Nan Y, Mei S, Ju D, et al. Innate Immunity in Cancer Biology and Therapy. Int J Mol Sci. 24(11233):1–18 (2023).
[120] Rameshbabu S, Labadie BW, Argulian A, Patnaik A. Targeting innate immunity in cancer therapy. Vaccines (Basel). 9(2):1–26 (2021).
[121] Pulendran B, S. Arunachalam P, O’Hagan DT. Emerging concepts in the science of vaccine adjuvants. Nat Rev Drug Discov. 20(6):454–75 (2021).
[122] Dorostkar F, Arashkia A, Roohvand F, Shoja Z, Navari M, Mashhadi Abolghasem Shirazi M, et al. Co‐administration of 2’3’-cGAMP STING activator and CpG-C adjuvants with a mutated form of HPV 16 E7 protein leads to tumor growth inhibition in the mouse model. Infect Agent Cancer. 16(7):1–10 (2021).
[123] Temizoz B, Hioki K, Kobari S, Jounai N, Kusakabe T, Lee MSJ, et al. Anti-tumor immunity by transcriptional synergy between TLR9 and STING activation. Int Immunol. 34(7):353–64 (2022).
[124] Kocabas BB, Almacioglu K, Bulut EA, Gucluler G, Tincer G, Bayik D, et al. Dual-adjuvant effect of pH-sensitive liposomes loaded with STING and TLR9 agonists regress tumor development by enhancing Th1 immune response. Journal of Controlled Release. 328:587–95 (2020).
[125] Diner EJ, Burdette DL, Wilson SC, Monroe KM, Kellenberger CA, Hyodo M, et al. The Innate Immune DNA Sensor cGAS Produces a Noncanonical Cyclic Dinucleotide that Activates Human STING. Cell Rep. 3(5):1355–61 (2013).
[126] Cheng X, Ning J, Xu X, Zhou X. The role of bacterial cyclic di-adenosine monophosphate in the host immune response. Front Microbiol. 13(958133):1–13 (2022).
[127] Van Der Meide EH, Schellekens & H. Cytokines and the immune response. Biotherapy. 8:243–9 (1996).
[128] Paul WE, Zhu J. How are TH2-type immune responses initiated and amplified? Nat Rev Immunol. 10(4):225–35 (2010).
[129] Yildiz S, Alpdundar E, Gungor B, Kahraman T, Bayyurt B, Gursel I, et al. Enhanced immunostimulatory activity of cyclic dinucleotides on mouse cells when complexed with a cell-penetrating peptide or combined with CpG. Eur J Immunol. 45(4):1170–9 (2015).
[130] Cao Y, Ding S, Zeng L, Miao J, Wang K, Chen G, et al. Reeducating tumor-associated macrophages using CpG@Au nanocomposites to modulate immunosuppressive microenvironment for improved radio-immunotherapy. ACS Appl Mater Interfaces. 13(45):53504–18 (2021).
[131] Liu M, O’Connor RS, Trefely S, Graham K, Snyder NW, Beatty GL. Metabolic rewiring of macrophages by CpG potentiates clearance of cancer cells and overcomes tumor-expressed CD47−mediated ‘don’t-eat-me’ signal. Nat Immunol. 20(3):265–75 (2019).
[132] Hajiabadi S, Alidadi S, Ghahramani Senoo MM, Farahi ZM, Farzin HR, Haghparast A. Therapeutic Effects of ADU-S100 as STING Agonist and CpG ODN1826 as TLR9 Agonist in CT-26 Model of Colon Carcinoma. Iran J Vet Sci Technol. 15(2):29–37 (2023).
[133] Jneid B, Bochnakian A, Hoffmann C, Delisle F, Djacoto E, Sirven P, et al. Selective STING stimulation in dendritic cells primes antitumor T cell responses. Sci Immunol. 8(79):1–17 (2023).
[134] Wu YT, Fang Y, Wei Q, Shi H, Tan H, Deng Y, et al. Tumor-targeted delivery of a STING agonist improves cancer immunotherapy. Proc Natl Acad Sci U S A. 119(49):1–11 (2022).
[135] Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D. Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol. 20(1):7–24 (2020).
[136] Wu J, Li S, Yang Y, Zhu S, Zhang M, Qiao Y, et al. TLR-activated plasmacytoid dendritic cells inhibit breast cancer cell growth in vitro and in vivo. Oncotarget. 8(7):11708–18 (2017).
[137] Ulrich-Lewis JT, Draves KE, Roe K, O’Connor MA, Clark EA, Fuller DH. STING Is Required in Conventional Dendritic Cells for DNA Vaccine Induction of Type I T Helper Cell- Dependent Antibody Responses. Front Immunol. 13:1–11 (2022).
[138] Koucký V, Bouček J, Fialová A. Immunology of plasmacytoid dendritic cells in solid tumors: A brief review. Cancers (Basel). 11(470):1–14 (2019).
[139] Kim CW, Kim K Do, Lee HK. The role of dendritic cells in tumor microenvironments and their uses as therapeutic targets. BMB Rep. 54(1):31–43 (2021).
[140] Blair TC, Bambina S, Alice AF, Kramer GF, Medler TR, Baird JR, et al. Dendritic Cell Maturation Defines Immunological Responsiveness of Tumors to Radiation Therapy. The Journal of Immunology. 204(12):3416–24 (2020).
[141] Reis-Sobreiro M, Teixeira da Mota A, Jardim C, Serre K. Bringing macrophages to the frontline against cancer: Current immunotherapies targeting macrophages. Cells. 10(2364):1–35 (2021).
[142] Ruffin AT, Li H, Vujanovic L, Zandberg DP, Ferris RL, Bruno TC. Improving head and neck cancer therapies by immunomodulation of the tumour microenvironment. Nat Rev Cancer. 23(3):173–88 (2023).
[143] Kashfi K, Kannikal J, Nath N. Macrophage reprogramming and cancer therapeutics: Role of iNOS-derived NO. Cells. 10(3194):1–22 (2021).
[144] Cao LL, Kagan JC. Targeting innate immune pathways for cancer immunotherapy. Immunity. 56:2206–17 (2023).
[145] Gao J, Liang Y, Wang L. Shaping Polarization of Tumor-Associated Macrophages in Cancer Immunotherapy. Front Immunol. 13(888712):1–12 (2022).
[146] Lin HC, Lin JY. Immune Cell-Conditioned Media Suppress Prostate Cancer PC-3 Cell Growth Correlating with Decreased Proinflammatory/Anti-inflammatory Cytokine Ratios in the Media Using 5 Selected Crude Polysaccharides. Integr Cancer Ther. 15(4):NP13–25 (2016).
[147] Lin HC, Lin JY. M1 Polarization but Anti-LPS-Induced Inflammation and Anti-MCF-7 Breast Cancer Cell Growth Effects of Five Selected Polysaccharides. Evidence-based Complementary and Alternative Medicine. 2020(9450246):1–17 (2020).
指導教授 莊宗顯 王健家(Tsung-Hsien Chuang Chien-Chia Wang) 審核日期 2024-1-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明