博碩士論文 110827005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.141.244.201
姓名 劉子彤(Tzu-Tung Liu)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 鼻咽癌外泌小體藉由EB病毒潛伏膜蛋白1促進巨噬細胞免疫抑制型分化
(Nasopharyngeal carcinoma-derived exosomes facilitate immunosuppressive macrophage polarization via Epstein-Barr virus-encoded latent membrane protein 1)
相關論文
★ 具生物沾粘性免疫奈米磁珠之電化學平台於急性冠心病標誌物檢測★ 離子液體應用於脂溶性蛋白之快速萃取及檢測
★ 深度學習計算成像系統於生物醫學顯微影像之重建與分析★ 磁電化學免疫分析系統 於新型冠狀病毒感染檢測之研製
★ 計算照明高通量生物醫學成像顯微鏡系統★ 表面增強拉曼散射探針及微流道系統 用於癌症細胞及外泌體表面生物標記物的多重檢測
★ 菲涅耳數位全像顯微系統於全血細胞分析之研製★ 遮罩區域卷積類神經網路於醫學影像物件偵測分析應用
★ 基於深度學習之高通量顯微影像系統於血液分析★ 可功能化編碼之表面增強拉曼光譜標籤探針於高靈敏與多重生醫分子檢測
★ 高通量計算顯微影像系統之研製於生物醫學成像與分析★ 功能性抗生物沾黏單層膜於冠狀動脈心血管疾病標誌物之檢測應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-12-31以後開放)
摘要(中) 鼻咽癌以EB病毒的感染及嚴重的腫瘤免疫浸潤現象為特徵。在鼻咽癌中,腫瘤相關巨噬細胞在促進免疫抑制型態的微環境上扮演重要的角色,且被認為與不良預後密切相關。先前的許多研究指出,鼻咽癌細胞會透過外泌小體促進形成一個促進腫瘤生長的微環境,然而這些帶有EB病毒產物的外吐小體和免疫細胞之間的免疫調控關係仍待深入探索。此篇論文研究目的在於探討源於鼻咽癌細胞的外泌小體對巨噬細胞功能的調控。我們發現EB病毒產物可以透過外泌體傳遞給未感染之癌細胞及周遭巨噬細胞。質譜蛋白分析結果顯示鼻咽癌細胞的外泌小體帶有EB病毒產物,如EB病毒潛伏膜蛋白1 (LMP1)及EBV病毒胸苷激酶。我們藉由西方墨點法驗證外吐小體中含有EB病毒潛伏膜蛋白1 (LMP1)。實驗結果顯示,由人類周邊血單核球分化的巨噬細胞攝取這些含有LMP1的外泌小體後,會產生趨向免疫抑制型態的極化現象,並伴隨著相似M2型巨噬細胞的特徵,包括較高表現的CD206、ARG-1、VEGF及較少量的iNOS分泌。此外,受LMP1影響之巨噬細胞對初代癌細胞的毒殺作用表現較弱。細胞功能性實驗結果進一步顯示,巨噬細胞攝取這些外吐小體後,會幫助鼻咽癌細胞增生。RNA 定序的結果指出,含LMP1的外泌小體抑制了巨噬細胞之抗原呈現能力,並活化巨噬細胞MST1R (RON) 及IL-10訊號路徑。藉由後續深入的機制探討,我們發現LMP1的潛伏膜蛋白1的C端活化區2區段 (CTAR2) 與MST1R活化有關。除此之外,使用MST1R抑制劑可以部份抑制LMP1促發炎反應的抑制作用。透過鼻咽癌的公開RNA定序資料 (GSE102349) 分析,我們發現晚期鼻咽癌病人具有較高表現的MST1R (p < 0.001)。我們利用來自口腔癌病人的腫瘤組織處理過後得到的細胞進行單細胞定序,進一步探討了含LMP1的外泌小體在調控巨噬細胞免疫反應上的角色。分析結果顯示,將腫瘤微環境細胞群暴露於含LMP1的外泌小體會導致免疫抑制型態巨噬細胞的比例增加。分析細胞間的相互溝通訊號傳輸結果顯示,攝取外泌小體的巨噬細胞可能經由SPP1-ITGA4及Galectin-9-CD44/45交互作用調控T 細胞的毒殺能力。總結而言,我們發現來自鼻咽癌細胞含有LMP1的外泌小體能經由活化MST1R促進巨噬細胞免疫抑制型態的分化,進而建構有利於鼻咽癌生長的微環境。
摘要(英) Nasopharyngeal carcinoma (NPC) is characterized by Epstein-Barr virus (EBV) infection and severe immune infiltration within tumors. Tumor-associated macrophages (TAMs) are recognized as a crucial component contributing to an immune suppressive microenvironment and a poorer prognosis in NPC. Lines of evidence have shown that EBV+-NPC cells are capable of modulating tumor microenvironment (TME) via exosomes, resulting in a pro-tumoral niche. Nevertheless, the immunoregulatory link between the NPC-derived exosomes and macrophages remains a lot to be explored. The primary purpose of this study is to dissect how the NPC-derived exosomes regulate functions of macrophages. We demonstrated that EBV-encoded products could be transferred to uninfected cancer cells and surrounding macrophages via exosome cargos. Results of mass spectrometry analysis revealed that exosomes derived from NPC cells contain several EBV-encoded products, such as EBV-encoded latent membrane protein 1 (LMP1) and thymidine kinase. Western blotting further confirmed that NPC cells deposited LMP1 into exosomes. The uptake of these LMP1-containing exosomes (LMP1_exosomes) by human monocyte-derived macrophages led to an immunosuppressive polarization. Specifically, multiple properties of M2-like macrophages, including increased expressions of CD206, ARG-1, and VEGF, as well as a decreased expression of iNOS were found in LMP1_exosome-treated macrophages. Functionally, macrophages treated with LMP1_exosomes displayed a reduced cytotoxicity towards primary cancer cells compared to vehicle-treated macrophages. Treating macrophages with these exosomes also promoted NPC cells growth in an in vitro co-culture model. RNA sequencing data showed that LMP1_exosomes restrained the function of antigen presentation, while enhanced the macrophage stimulating 1 receptor (MST1R) and IL-10 signalings in macrophages. Mechanistic studies showed that LMP1-C-terminal activating region 2 (CTAR2) domain contributed to the activation of MST1R. Further, the transfer of LMP1 to macrophages enhanced pro-inflammatory signalings, which were partially suppressed by the use of MST1R inhibitor (SYN1143). Results of NPC tumor bulk RNA sequencing data demonstrated that higher level of MST1R was correlated with advanced stage of NPC (GSE102349) (p-value < 0.001). The role of EBV product-containing exosomes in modulating the immune responses of macrophages was further dissected using single-cell RNA sequencing (scRNA-seq) technique on exosome-treated cell suspension freshly isolated from oral tumors. Analytical results revealed that treating cells with EBV product-containing exosomes increased the proportion of immunosuppressive macrophages. Cell-cell communication analysis found that exosome-treated macrophages could modulate T cell cytotoxicity through ligand-receptor communications, crucial interactions are between SPP1 and ITGA4, as well as Galectin 9 and CD44/45. Collectively, our findings revealed that LMP1-containing exosomes facilitate immunosuppressive macrophage polarization via MST1R activation and contribute to NPC progression.
關鍵字(中) ★ Tumor-associated macrophages
★ Nasopharyngeal carcinoma
★ Epstein-Barr virus
★ tumor microenvironment
★ latent membrane protein 1
★ exosomes
關鍵字(英) ★ 腫瘤相關巨噬細胞
★ 鼻咽癌
★ EB病毒
★ 腫瘤微環境
★ EB病毒潛伏膜蛋白1
★ 外泌小體
論文目次 Chinese Abstract ii
Abstract iv
Table of Contents vi
List of Figures ix
List of Tables x
Abbreviations xi
Chapter I Introduction 1
1-1 Nasopharyngeal carcinoma (NPC) 1
1-2 Epstein-Barr virus (EBV) 1
1-2-1 EBV-encoded products modulate immune response 2
1-3 Exosome 3
1-4 Tumor microenvironment (TME) 4
1-4-1 Tumor-associated macrophages (TAMs) 5
1-5 Macrophage Stimulating 1 Receptor (MST1R/RON) 6
Chapter II Materials and Methods 8
2-1 Clinical samples 8
2-2 Cell culture 8
2-3 Exosome isolation 8
2-4 Exosome labeling 9
2-5 Mass spectrometry (MS) 9
2-6 Transmission electron microscopy (TEM) of exosomes 9
2-7 Peripheral blood mononuclear cells (PBMCs) isolation 10
2-8 Differentiation of monocytes to macrophages 10
2-9 Exosomal stimulation for THP-1-derived macrophages 11
2-10 Bulk RNA sequencing 11
2-11 Bulk transcriptome analysis 12
2-12 Single-cell suspensions preparation 12
2-13 Single-cell RNA sequencing (scRNA-seq) and data analysis 13
2-14 Transfection 14
2-15 Plasmids 14
2-16 Quantitative real-time RT-PCR (qRT-PCR) 14
2-17 Western blotting 15
2-18 Immunocytochemistry (ICC) staining 16
2-19 Immunohistochemistry (IHC) 16
2-20 In situ hybridization (ISH) 17
2-21 Time-lapse microscopy 17
2-22 5-Ethynyl-2-deoxyuridine (EdU) incorporation assay 17
2-23 Statistical analysis 18
Chapter III Results 19
3-1 EBV detection in NPC tissue 19
3-2 Exosomes derived from EBV+-NPC cells contain EBV-encoded LMP1 19
3-3 Uptake of EBV product-containing exosomes alters macrophages polarization 19
3-3-1 Exosome uptake by macrophages 20
3-3-2 Profiling of macrophage phenotype mediated by LMP1_exosomes 20
3-3-3 LMP1_exosomes inhibit anti-tumor immunity of macrophages 21
3-4 LMP1-containing exosomes promote immunosuppressive polarization via
activating MST1R (RON) 21
3-4-1 Bioinformatic analyses reveal dysregulated pathways by LMP1_exosomes 21
3-4-2 LMP1 induced M2-like polarization through RON signaling 22
3-5 Enhanced MST1R expression is associated with a poor prognosis in NPC 23
3-6 LMP1-containing exosomes assist immune evasion and cancer cell growth 23
3-7 Single-cell RNA-seq identifies pathways regulated by LMP1_exosomes 24
3-7-1 Identification of immune cell populations in head and neck tissues 24
3-7-2 EBV+ exosomes induced macrophages immunosuppressive polarization 25
3-7-3 Intercellular interactions induced by LMP1-containing exosomes 25
Chapter IV Conclusion and Discussion 27
Chapter V Figures and Tables 29
Reference 57
參考文獻 1. Albanese, M., T. Tagawa, A. Buschle, and W. Hammerschmidt. 2017. ′MicroRNAs of Epstein-Barr Virus Control Innate and Adaptive Antiviral Immunity′, J Virol, 91.
2. Bader, J. E., K. Voss, and J. C. Rathmell. 2020. ′Targeting Metabolism to Improve the Tumor Microenvironment for Cancer Immunotherapy′, Mol Cell, 78: 1019-33.
3. Baghban, Roghayyeh, Leila Roshangar, Rana Jahanban-Esfahlan, Khaled Seidi, Abbas Ebrahimi-Kalan, Mehdi Jaymand, Saeed Kolahian, Tahereh Javaheri, and Peyman Zare. 2020. ′Tumor microenvironment complexity and therapeutic implications at a glance′, Cell Communication and Signaling, 18: 59.
4. Balkwill, F., and A. Mantovani. 2001. ′Inflammation and cancer: back to Virchow?′, Lancet, 357: 539-45.
5. Browaeys, R., W. Saelens, and Y. Saeys. 2020. ′NicheNet: modeling intercellular communication by linking ligands to target genes′, Nat Methods, 17: 159-62.
6. Buzas, Edit I. 2023. ′The roles of extracellular vesicles in the immune system′, Nature Reviews Immunology, 23: 236-50.
7. Calon, A., D. V. Tauriello, and E. Batlle. 2014. ′TGF-beta in CAF-mediated tumor growth and metastasis′, Semin Cancer Biol, 25: 15-22.
8. Cassetta, L., and J. W. Pollard. 2018. ′Targeting macrophages: therapeutic approaches in cancer′, Nat Rev Drug Discov, 17: 887-904.
9. Chang, E. T., and H. O. Adami. 2006. ′The enigmatic epidemiology of nasopharyngeal carcinoma′, Cancer Epidemiol Biomarkers Prev, 15: 1765-77.
10. Chen, C. C., L. C. Chen, Y. Liang, N. M. Tsang, and Y. S. Chang. 2010. ′Epstein-Barr virus latent membrane protein 1 induces the chemotherapeutic target, thymidine phosphorylase, via NF-kappaB and p38 MAPK pathways′, Cell Signal, 22: 1132-42.
11. Chen, Q., D. W. Seol, B. Carr, and R. Zarnegar. 1997. ′Co-expression and regulation of Met and Ron proto-oncogenes in human hepatocellular carcinoma tissues and cell lines′, Hepatology, 26: 59-66.
12. Chen, Y. L. 2020. ′Prognostic significance of tumor-associated macrophages in patients with nasopharyngeal carcinoma: A meta-analysis′, Medicine (Baltimore), 99: e21999.
13. Chen, Y. P., A. T. C. Chan, Q. T. Le, P. Blanchard, Y. Sun, and J. Ma. 2019. ′Nasopharyngeal carcinoma′, Lancet, 394: 64-80.
14. Chen, Y. Q., J. H. Fisher, and M. H. Wang. 1998. ′Activation of the RON receptor tyrosine kinase inhibits inducible nitric oxide synthase (iNOS) expression by murine peritoneal exudate macrophages: phosphatidylinositol-3 kinase is required for RON-mediated inhibition of iNOS expression′, J Immunol, 161: 4950-9.
15. Chen, Yibing, Yucen Song, Wei Du, Longlong Gong, Haocai Chang, and Zhengzhi Zou. 2019. ′Tumor-associated macrophages: an accomplice in solid tumor progression′, Journal of Biomedical Science, 26: 78.
16. Chou, Y. C., C. L. Chen, T. H. Yeh, S. J. Lin, M. R. Chen, S. L. Doong, J. Lu, and C. H. Tsai. 2012. ′Involvement of recepteur d′origine nantais receptor tyrosine kinase in Epstein-Barr virus-associated nasopharyngeal carcinoma and its metastasis′, Am J Pathol, 181: 1773-81.
17. Chou, Ya-Ching, Sue-Jane Lin, Jean Lu, Te-Huei Yeh, Chi-Long Chen, Pei-Lun Weng, Jiun-Han Lin, Ming Yao, and Ching-Hwa Tsai. 2011. ′Requirement for LMP1-induced RON receptor tyrosine kinase in Epstein-Barr virus–mediated B-cell proliferation′, Blood, 118: 1340-49.
18. Cohen, J. I. 2000. ′Epstein-Barr virus infection′, N Engl J Med, 343: 481-92.
19. Colegio, O. R., N. Q. Chu, A. L. Szabo, T. Chu, A. M. Rhebergen, V. Jairam, N. Cyrus, C. E. Brokowski, S. C. Eisenbarth, G. M. Phillips, G. W. Cline, A. J. Phillips, and R. Medzhitov. 2014. ′Functional polarization of tumour-associated macrophages by tumour-derived lactic acid′, Nature, 513: 559-63.
20. Crawford, D. H. 2001. ′Biology and disease associations of Epstein-Barr virus′, Philos Trans R Soc Lond B Biol Sci, 356: 461-73.
21. Dawson, C. W., R. J. Port, and L. S. Young. 2012. ′The role of the EBV-encoded latent membrane proteins LMP1 and LMP2 in the pathogenesis of nasopharyngeal carcinoma (NPC)′, Semin Cancer Biol, 22: 144-53.
22. Dukers, D. F., P. Meij, M. B. Vervoort, W. Vos, R. J. Scheper, C. J. Meijer, E. Bloemena, and J. M. Middeldorp. 2000. ′Direct immunosuppressive effects of EBV-encoded latent membrane protein 1′, J Immunol, 165: 663-70.
23. Duluc, D., Y. Delneste, F. Tan, M. P. Moles, L. Grimaud, J. Lenoir, L. Preisser, I. Anegon, L. Catala, N. Ifrah, P. Descamps, E. Gamelin, H. Gascan, M. Hebbar, and P. Jeannin. 2007. ′Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells′, Blood, 110: 4319-30.
24. Fialin, C., C. Larrue, F. Vergez, J. E. Sarry, S. Bertoli, V. Mansat-De Mas, C. Demur, E. Delabesse, B. Payrastre, S. Manenti, S. Roche, and C. Récher. 2013. ′The short form of RON is expressed in acute myeloid leukemia and sensitizes leukemic cells to cMET inhibitors′, Leukemia, 27: 325-35.
25. Gaudino, G., A. Follenzi, L. Naldini, C. Collesi, M. Santoro, K. A. Gallo, P. J. Godowski, and P. M. Comoglio. 1994. ′RON is a heterodimeric tyrosine kinase receptor activated by the HGF homologue MSP′, Embo j, 13: 3524-32.
26. Gurusamy, D., J. K. Gray, P. Pathrose, R. M. Kulkarni, F. D. Finkleman, and S. E. Waltz. 2013. ′Myeloid-specific expression of Ron receptor kinase promotes prostate tumor growth′, Cancer Res, 73: 1752-63.
27. Hänzelmann, Sonja, Robert Castelo, and Justin Guinney. 2013. ′GSVA: gene set variation analysis for microarray and RNA-Seq data′, BMC Bioinformatics, 14: 7.
28. He, G., X. Peng, S. Wei, S. Yang, X. Li, M. Huang, S. Tang, H. Jin, J. Liu, S. Zhang, H. Zheng, Q. Fan, J. Liu, L. Yang, and H. Li. 2022. ′Exosomes in the hypoxic TME: from release, uptake and biofunctions to clinical applications′, Mol Cancer, 21: 19.
29. Hsu, P. Y., H. S. Liu, H. L. Cheng, T. S. Tzai, H. R. Guo, C. L. Ho, and N. H. Chow. 2006. ′Collaboration of RON and epidermal growth factor receptor in human bladder carcinogenesis′, J Urol, 176: 2262-7.
30. Hu, L. F., F. Chen, Q. F. Zhen, Y. W. Zhang, Y. Luo, X. Zheng, G. Winberg, I. Ernberg, and G. Klein. 1995. ′Differences in the growth pattern and clinical course of EBV-LMP1 expressing and non-expressing nasopharyngeal carcinomas′, Eur J Cancer, 31a: 658-60.
31. Huang, D., S. J. Song, Z. Z. Wu, W. Wu, X. Y. Cui, J. N. Chen, M. S. Zeng, and S. C. Su. 2017. ′Epstein-Barr Virus-Induced VEGF and GM-CSF Drive Nasopharyngeal Carcinoma Metastasis via Recruitment and Activation of Macrophages′, Cancer Res, 77: 3591-604.
32. Iwakiri, D., T. S. Sheen, J. Y. Chen, D. P. Huang, and K. Takada. 2005. ′Epstein-Barr virus-encoded small RNA induces insulin-like growth factor 1 and supports growth of nasopharyngeal carcinoma-derived cell lines′, Oncogene, 24: 1767-73.
33. Jin, Ming-Zhu, and Wei-Lin Jin. 2020. ′The updated landscape of tumor microenvironment and drug repurposing′, Signal Transduction and Targeted Therapy, 5: 166.
34. Jin, Suoqin, Christian F. Guerrero-Juarez, Lihua Zhang, Ivan Chang, Raul Ramos, Chen-Hsiang Kuan, Peggy Myung, Maksim V. Plikus, and Qing Nie. 2021. ′Inference and analysis of cell-cell communication using CellChat′, Nat Commun, 12: 1088.
35. Kalluri, R., and V. S. LeBleu. 2020. ′The biology, function, and biomedical applications of exosomes′, Science, 367.
36. Kelly, G., A. Bell, and A. Rickinson. 2002. ′Epstein-Barr virus-associated Burkitt lymphomagenesis selects for downregulation of the nuclear antigen EBNA2′, Nat Med, 8: 1098-104.
37. Kong, Andy T., Felipe V. Leprevost, Dmitry M. Avtonomov, Dattatreya Mellacheruvu, and Alexey I. Nesvizhskii. 2017. ′MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry–based proteomics′, Nature Methods, 14: 513-20.
38. Lawrence, Toby, and Gioacchino Natoli. 2011. ′Transcriptional regulation of macrophage polarization: enabling diversity with identity′, Nature Reviews Immunology, 11: 750-61.
39. Lee, Po-Ju, Yun-Hua Sui, Tzu-Tung Liu, Ngan-Ming Tsang, Chen-Han Huang, Ting-Yi Lin, Kai-Ping Chang, and Shu-Chen Liu. 2022. ′Epstein-Barr viral product-containing exosomes promote fibrosis and nasopharyngeal carcinoma progression through activation of YAP1/FAPα signaling in fibroblasts′, Journal of Experimental & Clinical Cancer Research, 41: 254.
40. Leskowitz, R. M., X. Y. Zhou, F. Villinger, M. H. Fogg, A. Kaur, P. M. Lieberman, F. Wang, and H. C. Ertl. 2013. ′CD4+ and CD8+ T-cell responses to latent antigen EBNA-1 and lytic antigen BZLF-1 during persistent lymphocryptovirus infection of rhesus macaques′, J Virol, 87: 8351-62.
41. Li, I., and B. Y. Nabet. 2019. ′Exosomes in the tumor microenvironment as mediators of cancer therapy resistance′, Mol Cancer, 18: 32.
42. Lin, Yuxin, Jianxin Xu, and Huiyin Lan. 2019. ′Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications′, Journal of Hematology & Oncology, 12: 76.
43. Lista, M. J., R. P. Martins, O. Billant, M. A. Contesse, S. Findakly, P. Pochard, C. Daskalogianni, C. Beauvineau, C. Guetta, C. Jamin, M. P. Teulade-Fichou, R. Fåhraeus, C. Voisset, and M. Blondel. 2017. ′Nucleolin directly mediates Epstein-Barr virus immune evasion through binding to G-quadruplexes of EBNA1 mRNA′, Nat Commun, 8: 16043.
44. Liu, H. P., C. C. Wu, and Y. S. Chang. 2006. ′PRA1 promotes the intracellular trafficking and NF-kappaB signaling of EBV latent membrane protein 1′, Embo j, 25: 4120-30.
45. Love, M. I., W. Huber, and S. Anders. 2014. ′Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2′, Genome Biol, 15: 550.
46. Ma, Ruo-Yu, Annabel Black, and Bin-Zhi Qian. 2022. ′Macrophage diversity in cancer revisited in the era of single-cell omics′, Trends in Immunology, 43: 546-63.
47. Maggiora, P., A. Lorenzato, S. Fracchioli, B. Costa, M. Castagnaro, R. Arisio, D. Katsaros, M. Massobrio, P. M. Comoglio, and M. Flavia Di Renzo. 2003. ′The RON and MET oncogenes are co-expressed in human ovarian carcinomas and cooperate in activating invasiveness′, Exp Cell Res, 288: 382-9.
48. McGinnis, Christopher S., Lyndsay M. Murrow, and Zev J. Gartner. 2019. ′DoubletFinder: Doublet Detection in Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors′, Cell Systems, 8: 329-37.e4.
49. Middeldorp, J. M., and D. M. Pegtel. 2008. ′Multiple roles of LMP1 in Epstein-Barr virus induced immune escape′, Seminars in Cancer Biology, 18: 388-96.
50. Mosser, D. M., and J. P. Edwards. 2008. ′Exploring the full spectrum of macrophage activation′, Nat Rev Immunol, 8: 958-69.
51. Münz, C. 2004. ′Epstein-barr virus nuclear antigen 1: from immunologically invisible to a promising T cell target′, J Exp Med, 199: 1301-4.
52. Münz, C., and A. Moormann. 2008. ′Immune escape by Epstein-Barr virus associated malignancies′, Semin Cancer Biol, 18: 381-7.
53. Nahrendorf, M., and F. K. Swirski. 2016. ′Abandoning M1/M2 for a Network Model of Macrophage Function′, Circ Res, 119: 414-7.
54. Nikolaidis, N. M., J. K. Gray, D. Gurusamy, W. Fox, W. D. Stuart, N. Huber, and S. E. Waltz. 2010. ′Ron receptor tyrosine kinase negatively regulates TNFalpha production in alveolar macrophages by inhibiting NF-kappaB activity and Adam17 production′, Shock, 33: 197-204.
55. Ning, J. P., M. C. Yu, Q. S. Wang, and B. E. Henderson. 1990. ′Consumption of salted fish and other risk factors for nasopharyngeal carcinoma (NPC) in Tianjin, a low-risk region for NPC in the People′s Republic of China′, J Natl Cancer Inst, 82: 291-6.
56. Orimo, Akira, and Robert A. Weinberg. 2006. ′Stromal Fibroblasts in Cancer: A Novel Tumor-Promoting Cell Type′, Cell Cycle, 5: 1597-601.
57. Parks, Scott K., Wolfgang Mueller-Klieser, and Jacques Pouysségur. 2020. ′Lactate and Acidity in the Cancer Microenvironment′, Annual Review of Cancer Biology, 4: 141-58.
58. Pathmanathan, R., U. Prasad, G. Chandrika, R. Sadler, K. Flynn, and N. Raab-Traub. 1995. ′Undifferentiated, nonkeratinizing, and squamous cell carcinoma of the nasopharynx. Variants of Epstein-Barr virus-infected neoplasia′, Am J Pathol, 146: 1355-67.
59. Peace, B. E., K. Toney-Earley, M. H. Collins, and S. E. Waltz. 2005. ′Ron receptor signaling augments mammary tumor formation and metastasis in a murine model of breast cancer′, Cancer Res, 65: 1285-93.
60. Qi, J., H. Sun, Y. Zhang, Z. Wang, Z. Xun, Z. Li, X. Ding, R. Bao, L. Hong, W. Jia, F. Fang, H. Liu, L. Chen, J. Zhong, D. Zou, L. Liu, L. Han, F. Ginhoux, Y. Liu, Y. Ye, and B. Su. 2022. ′Single-cell and spatial analysis reveal interaction of FAP(+) fibroblasts and SPP1(+) macrophages in colorectal cancer′, Nat Commun, 13: 1742.
61. Qian, Bin-Zhi, and Jeffrey W. Pollard. 2010. ′Macrophage Diversity Enhances Tumor Progression and Metastasis′, Cell, 141: 39-51.
62. Ray, M., S. Yu, D. R. Sharda, C. B. Wilson, Q. Liu, N. Kaushal, K. S. Prabhu, and P. A. Hankey. 2010. ′Inhibition of TLR4-induced IκB kinase activity by the RON receptor tyrosine kinase and its ligand, macrophage-stimulating protein′, J Immunol, 185: 7309-16.
63. Rittling, S. R. 2011. ′Osteopontin in macrophage function′, Expert Rev Mol Med, 13: e15.
64. Ronsin, C., F. Muscatelli, M. G. Mattei, and R. Breathnach. 1993. ′A novel putative receptor protein tyrosine kinase of the met family′, Oncogene, 8: 1195-202.
65. Rőszer, Tamás. 2015. ′Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms′, Mediators Inflamm, 2015: 816460.
66. Ruiz-Torres, Sasha J., Jennifer R. Bourn, Nancy M. Benight, Brian G. Hunt, Carissa Lester, and Susan E. Waltz. 2022. ′Macrophage-mediated RON signaling supports breast cancer growth and progression through modulation of IL-35′, Oncogene, 41: 321-33.
67. Scharping, Nicole E., Dayana B. Rivadeneira, Ashley V. Menk, Paolo D. A. Vignali, B. Rhodes Ford, Natalie L. Rittenhouse, Ronal Peralta, Yiyang Wang, Yupeng Wang, Kristin DePeaux, Amanda C. Poholek, and Greg M. Delgoffe. 2021. ′Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion′, Nature Immunology, 22: 205-15.
68. Shapouri-Moghaddam, A., S. Mohammadian, H. Vazini, M. Taghadosi, S. A. Esmaeili, F. Mardani, B. Seifi, A. Mohammadi, J. T. Afshari, and A. Sahebkar. 2018. ′Macrophage plasticity, polarization, and function in health and disease′, J Cell Physiol, 233: 6425-40.
69. Sica, A., and A. Mantovani. 2012. ′Macrophage plasticity and polarization: in vivo veritas′, J Clin Invest, 122: 787-95.
70. Soldan, Samantha S., and Paul M. Lieberman. 2023. ′Epstein–Barr virus and multiple sclerosis′, Nature Reviews Microbiology, 21: 51-64.
71. Subramanian, A., P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. Gillette, A. Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander, and J. P. Mesirov. 2005. ′Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles′, Proc Natl Acad Sci U S A, 102: 15545-50.
72. Théry, Clotilde, Laurence Zitvogel, and Sebastian Amigorena. 2002. ′Exosomes: composition, biogenesis and function′, Nature Reviews Immunology, 2: 569-79.
73. Thobe, M. N., D. Gurusamy, P. Pathrose, and S. E. Waltz. 2010. ′The Ron receptor tyrosine kinase positively regulates angiogenic chemokine production in prostate cancer cells′, Oncogene, 29: 214-26.
74. Tse, K. P., W. H. Su, K. P. Chang, N. M. Tsang, C. J. Yu, P. Tang, L. C. See, C. Hsueh, M. L. Yang, S. P. Hao, H. Y. Li, M. H. Wang, L. P. Liao, L. C. Chen, S. R. Lin, T. J. Jorgensen, Y. S. Chang, and Y. Y. Shugart. 2009. ′Genome-wide association study reveals multiple nasopharyngeal carcinoma-associated loci within the HLA region at chromosome 6p21.3′, Am J Hum Genet, 85: 194-203.
75. Varzaneh, F. N., B. Keller, S. Unger, A. Aghamohammadi, K. Warnatz, and N. Rezaei. 2014. ′Cytokines in common variable immunodeficiency as signs of immune dysregulation and potential therapeutic targets - a review of the current knowledge′, J Clin Immunol, 34: 524-43.
76. Vereyken, E. J., P. D. Heijnen, W. Baron, E. H. de Vries, C. D. Dijkstra, and C. E. Teunissen. 2011. ′Classically and alternatively activated bone marrow derived macrophages differ in cytoskeletal functions and migration towards specific CNS cell types′, J Neuroinflammation, 8: 58.
77. Wagh, Purnima K., Belinda E. Peace, and Susan E. Waltz. 2008. ′Met‐Related Receptor Tyrosine Kinase Ron in Tumor Growth and Metastasis.′ in, Advances in Cancer Research (Academic Press).
78. Wang, M. H., A. A. Dlugosz, Y. Sun, T. Suda, A. Skeel, and E. J. Leonard. 1996. ′Macrophage-stimulating protein induces proliferation and migration of murine keratinocytes′, Exp Cell Res, 226: 39-46.
79. Webber, Jason, Robert Steadman, Malcolm D. Mason, Zsuzsanna Tabi, and Aled Clayton. 2010. ′Cancer Exosomes Trigger Fibroblast to Myofibroblast Differentiation′, Cancer Research, 70: 9621-30.
80. Wei, W. I., and J. S. Sham. 2005. ′Nasopharyngeal carcinoma′, Lancet, 365: 2041-54.
81. Willett, C. G., M. H. Wang, R. L. Emanuel, S. A. Graham, D. I. Smith, V. Shridhar, D. J. Sugarbaker, and M. E. Sunday. 1998. ′Macrophage-stimulating protein and its receptor in non-small-cell lung tumors: induction of receptor tyrosine phosphorylation and cell migration′, Am J Respir Cell Mol Biol, 18: 489-96.
82. Wu, C., T. Thalhamer, R. F. Franca, S. Xiao, C. Wang, C. Hotta, C. Zhu, M. Hirashima, A. C. Anderson, and V. K. Kuchroo. 2014. ′Galectin-9-CD44 interaction enhances stability and function of adaptive regulatory T cells′, Immunity, 41: 270-82.
83. Yang, Riyao, Linlin Sun, Ching-Fei Li, Yu-Han Wang, Jun Yao, Hui Li, Meisi Yan, Wei-Chao Chang, Jung-Mao Hsu, Jong-Ho Cha, Jennifer L. Hsu, Cheng-Wei Chou, Xian Sun, Yalan Deng, Chao-Kai Chou, Dihua Yu, and Mien-Chie Hung. 2021. ′Galectin-9 interacts with PD-1 and TIM-3 to regulate T cell death and is a target for cancer immunotherapy′, Nat Commun, 12: 832.
84. Yao, Hang-Ping, Yong-Qing Zhou, Ruiwen Zhang, and Ming-Hai Wang. 2013. ′MSP–RON signalling in cancer: pathogenesis and therapeutic potential′, Nature Reviews Cancer, 13: 466-81.
85. Young, L. S., and C. W. Dawson. 2014. ′Epstein-Barr virus and nasopharyngeal carcinoma′, Chin J Cancer, 33: 581-90.
86. Young, L. S., and A. B. Rickinson. 2004. ′Epstein-Barr virus: 40 years on′, Nat Rev Cancer, 4: 757-68.
87. Zhang, Y., W. Du, Z. Chen, and C. Xiang. 2017. ′Upregulation of PD-L1 by SPP1 mediates macrophage polarization and facilitates immune escape in lung adenocarcinoma′, Exp Cell Res, 359: 449-57.
88. Zhang, Yang, Tianyuan Liu, Xuesong Hu, Mei Wang, Jing Wang, Bohao Zou, Puwen Tan, Tianyu Cui, Yiying Dou, Lin Ning, Yan huang, Shuan Rao, Dong Wang, and Xiaoyang Zhao. 2021. ′CellCall: integrating paired ligand–receptor and transcription factor activities for cell–cell communication′, Nucleic Acids Research, 49: 8520-34.
89. Zhou, Y. Q., Y. Q. Chen, J. H. Fisher, and M. H. Wang. 2002. ′Activation of the RON receptor tyrosine kinase by macrophage-stimulating protein inhibits inducible cyclooxygenase-2 expression in murine macrophages′, J Biol Chem, 277: 38104-10.
90. Zhu, D., T. K. Johnson, Y. Wang, M. Thomas, K. Huynh, Q. Yang, V. C. Bond, Y. E. Chen, and D. Liu. 2020. ′Macrophage M2 polarization induced by exosomes from adipose-derived stem cells contributes to the exosomal proangiogenic effect on mouse ischemic hindlimb′, Stem Cell Res Ther, 11: 162.
指導教授 黃貞翰(Chen-Han Huang) 審核日期 2023-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明