博碩士論文 110827012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:104 、訪客IP:3.238.121.7
姓名 何昱穎(Yu-Ying Ho)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 發展個人化遠距醫療專用之智慧心電聽診器系統
(Developing a customized intelligent Electrocardiac-Stethoscope System for patient-centric telemedicine)
相關論文
★ 以磁振造影探究有病灶及無病灶神經疾病的自動偵測方法之開發★ 複雜系統跨頻率耦合方法
★ 不同麻醉深度之相位-振幅耦合量測及強度比較★ 基於小波轉換之單一導程心電圖 重構12導程心電圖與分類
★ 發展非侵入式即時交感神經活性指標之量測系統★ 以靜息態功能性磁振造影探討頸動脈支架手術對於頸動脈狹窄病患大腦功能之影響
★ 運用加速度計實現具多項生理功能量測之即時監控IOT平台★ 功能性抗生物沾黏單層膜於冠狀動脈心血管疾病標誌物之檢測應用
★ 創新利用模擬呼吸竇性心律不整之多階熵評估乙型腎上腺素阻斷劑在心衰竭病人之治療成效★ 發展高抗干擾非接觸式生理訊號監測系統
★ 應用特徵分群技術於非侵入式神經活性與行 為活動訊號之生物指標萃取★ 應用模擬電生理及人工智慧技術創造跨臨床心電圖資料庫之心肌缺血成像模型
★ 體外加強反搏治療裝置開發★ 自12導程心電圖擷取P波特徵辨識竇性心律下之 心房顫動高風險病患
★ 利用皮膚交感神經活化之時序複雜度和多尺度分析萃取心房顫動或心臟衰竭患者治療與預後 之生理指標
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-14以後開放)
摘要(中) 臨床上,心衰竭病人的心輸出能力,相較於正常人而言更加「力不從心」。若要及早發現心輸出能力的缺陷,監測心輸出量(Cardiac Output, CO)是勢在必行,但是市面上較為精密的醫療監測儀器,皆有體積龐大、價格昂貴的缺點,且侵入式量測亦有感染風險,即使如心臟超音波(Echocardiography)[1]、都普勒心臟排血量監測(Doppler Echocardiography, DE)[2]等非侵入式量測技術,也都需要具備專業知識人員才能操作。
因此,本研究將開發一套攜帶式且非侵入式的心電聽診系統,將臨床上的聽診器數位化,同時整合心電圖(Electrocardiogram, ECG)[3]及心音圖(Phonocardiogram, PCG)[4]量測的功能於數位聽診器上,分別透過單導程心電圖收取心電訊號、電容式麥克風收取心音訊號,經由類比電路上的濾波器處理後,於兩組類比數位轉換器(A-D Converter, ADC)取樣並編碼後,將轉換後的訊號傳輸至微控制器(Microcontroller, MCU)。將資料儲存於本地端microSD卡的同時,由低功耗藍芽(Bluetooth Low-Energy, BLE)無線傳輸技術輸出資料至手機APP端即時顯示。最後,可透過心電圖的特徵R波,對齊心音圖的特徵第一心音S1,將兩訊號做時間序列上的同步,計算兩者的時間差,獲得射血前期(Pre-Ejection Period, PEP)和左心室射血時間(Left Ventricular Ejection Time, LVET)[5]等心輸出量指標。更重要的是,此裝置同時配有肺音、廔管音的量測功能,能夠全面性的監測心臟輸出能力、血流動力和肺臟的相關生理機能。
本系統不僅為非侵入式的量測方式,除了具有低成本、體積小、易攜帶和易操作的優點,且於臨床上也能提供更多初步診斷的依據,更重要的是能夠有利於個人居家監測的普及化。
摘要(英) Compare to healthy ones, patients with Heart Failure (HF) have more awful ability on Cardiac Output. If we want to discover the problem at early age, monitoring cardiac output is an imperative work. Nevertheless, the medical devices those which could monitor precisely have some inevitable problems. No matter using invasive or non-invasive monitor techniques, both of them will face some challenges.
This study will develop a wearable and non-invasive Electrocardiac-Stethoscope System. By using a digital stethoscope, we measure the single lead ECG signal and PCG signal with capacitive microphone. After filtering, sampling and encoding the both signal through A-D Converter (ADC), the signals are transmitted to microcontroller (MCU). Then, the signal will simultaneously save in microSD card and transmit to APP on smartphone by Bluetooth Low-Energy (BLE) wireless technique. At the end, align S1 peak with R-peak for synchronizing the time series. By calculating time delay between peaks, we will get two important parameter for cardiac output, Pre-Ejection Period (PEP) and Left Ventricular Time (LVET). What’s more, the device can measure lung sound, vascular sound as well, which is able to monitor cardiac and pulmonary function.
The system has not only utilize a non-invasive method, but is also low-cost, small size and wearable. It will also provide lots of merits clinically and personally.
關鍵字(中) ★ 數位聽診器
★ 心音
★ 肺音
★ 廔管音
★ 醫聯網
★ 遠距醫療
關鍵字(英) ★ Digital Stethsocope
★ Heart Sound
★ Lung Sound
★ Vascular Sound
★ ECG
★ Medical Internet of Things
★ Telemedicine
論文目次 摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 X
第一章 緒論 - 1 -
1.1 前言 - 1 -
1.2 研究動機與目的 - 1 -
1.3 本文架構 - 2 -
第二章 研究原理 - 3 -
2.1 心電圖 - 3 -
2.1.1 心電圖原理 - 3 -
2.1.2 心電圖訊號 - 4 -
2.1.3 心電圖量測 - 6 -
2.2 心音圖 - 8 -
2.2.1 心音圖原理 - 8 -
2.2.2 心音圖訊號 - 9 -
2.2.3 心音圖量測 - 10 -
2.3 廔管音圖 - 11 -
2.3.1廔管音圖原理 - 11 -
2.3.2 廔管音圖訊號 - 12 -
2.3.3 廔管音圖量測 - 13 -
2.4 肺音圖 - 13 -
2.4.1 肺音圖原理 - 14 -
2.4.2 肺音圖訊號 - 14 -
2.4.3 肺音圖量測 - 16 -
第三章 研究方法與介紹 - 18 -
3.1 電源管理電路 - 18 -
3.1.1 鋰電池充電電路 - 18 -
3.1.2 電量偵測電路 - 20 -
3.1.3 正壓電源電路 - 21 -
3.1.4 負壓電源電路 - 23 -
3.2 前端類比電路 - 24 -
3.2.1 麥克風電路 - 25 -
3.2.2 濾波電路 - 26 -
3.2.3 電位轉換電路 - 30 -
3.2.4 音源輸出電路 - 31 -
3.2.5 心電訊號整合式電路 - 33 -
3.3 數位控制電路 - 35 -
3.3.1 微控制器 - 35 -
3.3.2 類比數位轉換器 - 36 -
3.3.3 microSD卡 - 38 -
3.3.4 低功耗藍芽 - 39 -
3.4 全系統電路 - 40 -
第四章 實驗結果及分析 - 46 -
4.1 前端類比電路驗證 - 46 -
4.2 數位控制電路驗證 - 48 -
4.3 全系統驗證及分析 - 49 -
4.4 電腦數據分析 - 51 -
4.4.1 心音訊號分析 - 51 -
4.4.2 廔管音訊號分析 - 52 -
4.4.3 肺音訊號分析 - 54 -
第五章 結論與未來展望 - 55 -
5.1 結論 - 55 -
5.2 未來展望 - 55 -
參考文獻 - 56 -
參考文獻 參考文獻
[1] Otto, C.M., Textbook of clinical echocardiography. 2013: Elsevier Health Sciences.
[2] Ihlen, H., et al., Determination of cardiac output by Doppler echocardiography. Heart, 1984. 51(1): p. 54-60.
[3] Meek, S. and F. Morris, ABC of clinical electrocardiography: Introduction. I—Leads, rate, rhythm, and cardiac axis. BMJ: British Medical Journal, 2002. 324(7334): p. 415.
[4] Rangayyan, R.M. and R.J. Lehner, Phonocardiogram signal analysis: a review. Critical reviews in biomedical engineering, 1987. 15(3): p. 211-236.
[5] Choudhary, T., L. Sharma, and M.K. Bhuyan, Heart sound extraction from sternal seismocardiographic signal. IEEE Signal Processing Letters, 2018. 25(4): p. 482-486.
[6] Kannel, W.B. and A.J. Belanger, Epidemiology of heart failure. American heart journal, 1991. 121(3): p. 951-957.
[7] Raherison, C. and P. Girodet, Epidemiology of COPD. European Respiratory Review, 2009. 18(114): p. 213-221.
[8] Lin, Y.-J., et al. An intelligent stethoscope with ECG and heart sound synchronous display. in 2019 IEEE international symposium on circuits and systems (ISCAS). 2019. IEEE.
[9] Geselowitz, D.B., On the theory of the electrocardiogram. Proceedings of the IEEE, 1989. 77(6): p. 857-876.
[10] Malmivuo, J. and R. Plonsey, Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields. 1995: Oxford University Press.
[11] Algarni, A.D., et al., Encryption of ECG signals for telemedicine applications. Multimedia Tools and Applications, 2021. 80: p. 10679-10703.
[12] Altay, Y.A. and A.S. Kremlev. Comparative analysis of ECG signal processing methods in the time-frequency domain. in 2018 IEEE conference of Russian young researchers in electrical and electronic engineering (EIConRus). 2018. IEEE.
[13] Tereshchenko, L.G. and M.E. Josephson, Frequency content and characteristics of ventricular conduction. Journal of electrocardiology, 2015. 48(6): p. 933-937.
[14] Chakrabarti, T., et al. Phonocardiogram signal analysis-practices, trends and challenges: A critical review. in 2015 international conference and workshop on computing and communication (IEMCON). 2015. IEEE.
[15] Khaled, S., M. Fakhry, and A.S. Mubarak. Classification of pcg signals using

a nonlinear autoregressive network with exogenous inputs (narx). in 2020 International Conference on Innovative Trends in Communication and Computer Engineering (ITCE). 2020. IEEE.
[16] Vásquez, P., Acoustical Signal Processing of Arterio-Venous Fistula Bruits. 2012: Department of Electrical and Information Technology, Lund University.
[17] Sung, P.-H., et al., Hemodialysis vascular access stenosis detection using auditory spectro-temporal features of phonoangiography. Medical & biological engineering & computing, 2015. 53: p. 393-403.
[18] Loudon, R. and R.L. Murphy Jr, Lung sounds. American Review of Respiratory Disease, 1984. 130(4): p. 663-673.
[19] Fraiwan, L., et al., Automatic identification of respiratory diseases from stethoscopic lung sound signals using ensemble classifiers. Biocybernetics and Biomedical Engineering, 2021. 41(1): p. 1-14.
[20] Gupta, P., et al., Detection of pathological mechano-acoustic signatures using precision accelerometer contact microphones in patients with pulmonary disorders. Scientific Reports, 2021. 11(1): p. 13427.
[21] Landau, H., Sampling, data transmission, and the Nyquist rate. Proceedings of the IEEE, 1967. 55(10): p. 1701-1706.
指導教授 羅孟宗(Men-Tzung Lo) 審核日期 2023-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明