博碩士論文 111223036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:13.59.235.107
姓名 陳冠佑(Kuan-Yu Chen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 快速蝕刻中空金屬有機骨架材料 應用於酵素固定化之研究
(Application of Rapid Etching for Hollow Metal-Organic Frameworks in Enzyme Immobilization Research)
相關論文
★ 天然物 Faveline methyl ether 之合成研究★ 人體突變生長激素受質膜內區段與半乳醣凝集素-12的表現、純化與結晶
★ 研究新型奈米粒子載體結合核糖核酸干擾調控在細胞內蛋白之表現★ 具芳香環胺基酸與內環狀結構之中孔洞材料的合成、鑑定與應用
★ 以手性亞碸催化劑進行醛的不對稱乙基化反應之研究★ 噁噻硼烷-氯化鎵錯合物催化不對稱 Diels-Alder 反應之研究
★ 開發心肌缺氧後再灌流傷害用藥與近紅外光染劑的高效率微脂體包覆方法★ Total Synthesis of Pikrosalvin, Simplexene C, D and Synthetic Studies toward Swartziarboreol G and Simplexene B
★ Understanding the Depolymerization of Biomass-derived Polysaccharides: Recrystallization while Hydrolyzing Polysaccharides★ 以手性有機硫催化劑進行不對稱環丙烷化反應並應用於合成吡咯類化合物之研究
★ 一、 以掌性硫化合物進行不對稱 [4+1] 環化反應並應用在吲哚啉類化合物的合成研究二、掌性共價有機框架材料的設計與合成並應用在多烯環化反應★ 第一章 以手性硫催化劑進行不對稱 [4+1] 環化反應並應用於合成吲哚類化合物之研究 第二章 設計與合成手性共價有機骨架並應用至不對稱多烯環化反應
★ 以開環置換聚合反應合成手性共價有機框架材料並將其應用於不對稱催化多烯環化反應之研究★ 利用光固化材料調控R3CE的界面共價修飾及其對三維細胞培養的影響
★ 流感病毒血球凝集素(II)膜外區域之物理化學特性分析★ 中孔洞材料SBA-15及其官能基化衍生材料對溶液中污染物之吸附應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-6-30以後開放)
摘要(中) 本實驗室於 2015 年利用原位創新合成法 (de novo approach),成功將
酵素在水相環境下封裝在類沸石咪唑骨架材料中 (ZIF-90 和 ZIF-8)。原位創
新合成法具有提供空間侷限性的優點,使得酵素可以在不易受外在因素影
響的情況下繼續進行催化反應。然而,在酵素固定化的過程中,材料和酵素
之間會發生相互作用,進而導致活性下降。基於這一點,本實驗室開發出快
速合成中空金屬有機骨架材料 (Hollow MOFs;HMOFs),並將其應用於封
裝酵素。中空材料可以降低材料和酵素之間的界面相互作用,此類中空結構
不僅緩解了活性降低的問題,還保留了 MOFs 的多孔選擇性。然而,與酵
素本身相比,酵素在材料中的生物活性並未完全恢復。
在本研究中期望 HMOFs 除了可以提升活性,還期望能結合 MOFs 多
孔選擇性和中空材料內部空間的優勢,期望 HMOFs 展現出半透膜之特性,
並透過本實驗室先前開發之enzyme@HZIF-8材料與尿素作為蛋白質展開劑
進行半透膜應用測試,透過控制殼層厚度和調節變性時間,進而觀察酵素活
性之變化,期望在中空材料中失活的酵素蛋白能在空腔中進行調整並重新
折疊,但酵素表現在 HZIF-8 系統中並未有明顯的改善。
為了近一步提升酵素在中空 MOF 系統中的活性,本研究決定開發新的
生物複合材料 enzyme@HMOF,在實驗中採用不同尺寸之 UiO-66 材料吸附
酵素,同時參考本實驗室 2015 於發表在《JACS》之論文,在外層合成親水
ii
性材料─ZIF-90,從而獲得雙層材料 enzyme-on-UiO-66@ZIF-90。再結合
MOFs對酸鹼值耐受性的不同,崩解內層的 UiO-66材料獲得enzyme@HZIF90,探討內部空腔大小對活性之影響。在本研究中除了保持快速蝕刻步驟,
enzyme@HZIF-90 不僅在活性表現方面相比 nzyme-on-UiO-66@ZIF-90 提高
了三倍,kobs達到 5.87*10-2。在半透膜應用測試中 enzyme@HZIF-90 也有不
錯的表現,活性的回復也可達到 34%。
摘要(英) The catalase (CAT) was embedded into sodalite (SOD) zeolitic imidazolate
frameworks (ZIF-8 and ZIF-90) via a water-based mild de novo approach
previously reported by our group in 2015. The de novo approach provided
shielding confinement properties, allowing the enzymes to maintain their
biological activity without being affected by external factors like inhibitors.
However, there are challenges for alleviating negative effects attributed by
interactions between the material and the enzyme during enzyme immobilization
process resulting in the decrease in activity. Building upon this, we developed a
new technique for rapid synthesis of hollow Metal-Organic Frameworks (HMOFs)
for encapsulation of enzyme, in which hollow MOFs reduces the interfacial
interactions between the material and enzymes. The hollow structure not only
mitigates the issue of decreased activity, but also retains the porous selectivity of
MOFs. However, the bioactivity of enzyme was not fully recovered comparing it
of free enzyme.
In this study, our aim was to explore the potential of HMOFs to not only
enhance activity but also integrate the porous selectivity of MOFs and the internal
space of hollow materials. Our hypothesis was that HMOFs could exhibit
characteristics resembling those of a semi-permeable membrane. To test this, we
employed the enzyme@HZIF-8 material in conjunction with urea as a protein
denaturing agent, aiming to assess its suitability for application in nanoscale semipermeable membranes. During our experimentation, we observed changes in
enzyme activity by manipulating the thickness of the shell layer and adjusting the
denaturation time. However, despite these efforts, we did not observe any
significant recovery in enzyme activity.
iv
To further enhance the enzyme activity in the hollow MOF system, we have
developed a novel approach to obtain the biocomposite of enzyme@HMOF.
Firstly, we selected UiO-66 particles of different sizes for enzyme adsorption onto
the surface. And then, we synthesized a double-layered material known as
enzyme-on-UiO-66@ZIF-90, following the methodology described in our
previous report from 2015. Moreover, taking advantage of the distinct acid and
alkaline tolerances of MOFs, we dissolved the inner layer of UiO-66, resulting in
the formation of enzyme@HZIF-90. The reason why we use the different sizes of
UiO-66 and it is expected that the activity of enzyme can be enhanced by
increasing the size of the cavity of hollow MOF.
In this study, besides maintaining a rapid etching step, enzyme@HZIF-90 not
only tripled the enzyme activity compared to enzyme-on-UiO-66@ZIF-90, with
a kobs reaching 5.87*10-2, but also demonstrated promising performance in semipermeable membrane applications, achieving a maximum activity recovery of
34.9%.
關鍵字(中) ★ 金屬有機框架
★ 中空材料
★ 蛋白質折疊
★ Zeta 電位
★ 酵素固定化
關鍵字(英) ★ metal-organic frameworks
★ hollow MOF
★ protein folding
★ Zeta potential
★ enzyme immobilization
論文目次 中文摘要 i
Abstract iii
目錄 v
圖目錄 viii
表目錄 xi
第一章 緒論 1
1-1 金屬有機骨架材料 1
1-2 類沸石咪唑骨架材料 4
1-3 UiO-66 6
1-4 酵素固定化 (Immobilized enzyme) 7
1-5 過氧化氫酶 8
1-6 研究動機與目的 9
第二章 實驗部分 12
2-1 實驗藥品與設備 12
2-1-1 實驗藥品 12
2-1-2 實驗使用儀器 15
2-1-3 實驗鑑定儀器 16
2-2 實驗儀器與方法 17
2-2-1 X射線粉末繞射儀 (Powder X-ray Diffractometer;PXRD) 17
2-2-2 紫外光/可見光分光光譜儀 (UV/VIS Spectrophotometer) 19
2-2-3 掃描式電子顯微鏡 (Field-emission Scanning Electron Microscope ; SEM) 20
2-2-4 穿透式電子顯微鏡 (Transmission Electron Microscope; TEM) 21
2-2-5 界面電位分析儀 (Zeta Potential Analyzer) 22
2-2-6 十二烷基硫酸鈉聚丙烯醯胺凝膠電泳 (SDS-PAGE) 24
2-3 實驗步驟 26
2-3-1 快速蝕刻合成中空類沸石咪骨架材料-包覆過氧化氫酶 (CAT@HZIF-8) 之合成 26
2-3-2 溶劑熱法合成UiO-66 (100 nm) 27
2-3-3 溶劑熱法合成UiO-66 (200 nm) 28
2-3-4 快速蝕刻合成中空類沸石咪骨架材料-包覆過氧化氫酶 (CAT@HZIF-90) 之合成 29
2-4 偵測蛋白質濃度 (Bradford Assay) 30
2-5 偵測過氧化氫水溶液之濃度 (Ferrous Oxidation-Xylenol orange assay;FOX assay) 32
第三章 結果與討論 34
3-1 CAT@HZIF-8之半透膜應用測試 34
3-2 CAT-on-UiO-66@ZIF-90之合成條件探討 37
3-3 CAT@HZIF-90 之中空材料結構鑑定與活性實驗 43
3-3-1 CAT@HZIF-90之X射線粉末繞射圖譜鑑定 43
3-3-2 CAT@HZIF-90之掃描式電子顯微鏡影像分析 46
3-3-3 CAT@HZIF-90之穿透式電子顯微鏡影像分析 47
3-3-4 CAT@HZIF-90之膠體電泳實驗 49
3-3-5 CAT@HZIF-90中空材料之活性測試及比較 50
3-3-6 CAT@HZIF-90浸泡蛋白水解酶-K活性表現之影響 53
3-3-7 CAT@HZIF-90之半透膜應用測試 54
第四章 結論及未來展望 55
參考文獻 57
參考文獻 1. Yaghi, O. M.; O′Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi,
M.; Kim, J., Reticular synthesis and the design of new materials. Nature 2003,
423 (6941), 705-714.
2. Seidi, F.; Jouyandeh, M.; Taghizadeh, M.; Taghizadeh, A.; Vahabi, H.;
Habibzadeh, S.; Formela, K.; Saeb, M. R. Metal-Organic Framework
(MOF)/Epoxy Coatings: A Review Materials [Online], 2020.
3. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M., The
Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341
(6149), 1230444.
4. Yoon, M.; Srirambalaji, R.; Kim, K., Homochiral Metal–Organic
Frameworks for Asymmetric Heterogeneous Catalysis. Chemical Reviews 2012,
112 (2), 1196-1231.
5. Getman, R. B.; Bae, Y.-S.; Wilmer, C. E.; Snurr, R. Q., Review and
Analysis of Molecular Simulations of Methane, Hydrogen, and Acetylene Storage
in Metal–Organic Frameworks. Chemical Reviews 2012, 112 (2), 703-723.
6. Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.;
Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C., Metal–Organic Frameworks
in Biomedicine. Chemical Reviews 2012, 112 (2), 1232-1268.
7. Bétard, A.; Fischer, R. A., Metal–Organic Framework Thin Films: From
Fundamentals to Applications. Chemical Reviews 2012, 112 (2), 1055-1083.
8. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R.
P.; Hupp, J. T., Metal–Organic Framework Materials as Chemical Sensors.
Chemical Reviews 2012, 112 (2), 1105-1125.
9. Li, J.-R.; Sculley, J.; Zhou, H.-C., Metal–Organic Frameworks for
Separations. Chemical Reviews 2012, 112 (2), 869-932.
10. Hoskins, B. F.; Robson, R., Design and construction of a new class of
scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked
molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures
and the synthesis and structure of the diamond-related frameworks
[N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4′′,4′′′-
tetracyanotetraphenylmethane]BF4.xC6H5NO2. Journal of the American
Chemical Society 1990, 112 (4), 1546-1554.
11. Rabenau, A., The Role of Hydrothermal Synthesis in Preparative Chemistry.
Angewandte Chemie International Edition in English 1985, 24 (12), 1026-1040.
12. Klinowski, J.; Almeida Paz, F. A.; Silva, P.; Rocha, J., MicrowaveAssisted Synthesis of Metal–Organic Frameworks. Dalton Transactions 2011, 40
58
(2), 321-330.
13. Ameloot, R.; Pandey, L.; Auweraer, M. V. d.; Alaerts, L.; Sels, B. F.;
De Vos, D. E., Patterned film growth of metal–organic frameworks based on
galvanic displacement. Chemical Communications 2010, 46 (21), 3735-3737.
14. Pichon, A.; Lazuen-Garay, A.; James, S. L., Solvent-free synthesis of a
microporous metal–organic framework. CrystEngComm 2006, 8 (3), 211-214.
15. Qiu, L.-G.; Li, Z.-Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X., Facile
synthesis of nanocrystals of a microporous metal–organic framework by an
ultrasonic method and selective sensing of organoamines. Chemical
Communications 2008, (31), 3642-3644.
16. Stock, N.; Biswas, S., Synthesis of Metal-Organic Frameworks (MOFs):
Routes to Various MOF Topologies, Morphologies, and Composites. Chemical
Reviews 2012, 112 (2), 933-969.
17. Zhang, Z.; Chen, Y.; Xu, X.; Zhang, J.; Xiang, G.; He, W.; Wang, X.,
Well-Defined Metal–Organic Framework Hollow Nanocages. Angewandte
Chemie International Edition 2014, 53 (2), 429-433.
18. Li, A.-L.; Ke, F.; Qiu, L.-G.; Jiang, X.; Wang, Y.-M.; Tian, X.-Y.,
Controllable synthesis of metal–organic framework hollow nanospheres by a
versatile step-by-step assembly strategy. CrystEngComm 2013, 15 (18), 3554-
3559.
19. Chen, E.-X.; Yang, H.; Zhang, J., Zeolitic Imidazolate Framework as
Formaldehyde Gas Sensor. Inorganic Chemistry 2014, 53 (11), 5411-5413.
20. Kim, H.; Lah, M. S., Templated and template-free fabrication strategies for
zero-dimensional hollow MOF superstructures. Dalton Transactions 2017, 46
(19), 6146-6158.
21. Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O’Keeffe,
M.; Yaghi, O. M., Synthesis, Structure, and Carbon Dioxide Capture Properties of
Zeolitic Imidazolate Frameworks. Accounts of Chemical Research 2010, 43 (1),
58-67.
22. Wu, H.; Zhou, W.; Yildirim, T., Hydrogen Storage in a Prototypical Zeolitic
Imidazolate Framework-8. Journal of the American Chemical Society 2007, 129
(17), 5314-5315.
23. Pan, Y.; Lai, Z., Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic
imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions.
Chemical Communications 2011, 47 (37), 10275-10277.
24. Kuo, C.-H.; Tang, Y.; Chou, L.-Y.; Sneed, B. T.; Brodsky, C. N.;
Zhao, Z.; Tsung, C.-K., Yolk–Shell Nanocrystal@ZIF-8 Nanostructures for GasPhase Heterogeneous Catalysis with Selectivity Control. Journal of the American
59
Chemical Society 2012, 134 (35), 14345-14348.
25. Morabito, J. V.; Chou, L.-Y.; Li, Z.; Manna, C. M.; Petroff, C. A.;
Kyada, R. J.; Palomba, J. M.; Byers, J. A.; Tsung, C.-K., Molecular
Encapsulation beyond the Aperture Size Limit through Dissociative Linker
Exchange in Metal–Organic Framework Crystals. Journal of the American
Chemical Society 2014, 136 (36), 12540-12543.
26. Huang, X.-C.; Lin, Y.-Y.; Zhang, J.-P.; Chen, X.-M., Ligand-Directed
Strategy for Zeolite-Type Metal–Organic Frameworks: Zinc(II) Imidazolates with
Unusual Zeolitic Topologies. Angewandte Chemie International Edition 2006, 45
(10), 1557-1559.
27. Morris, W.; Doonan, C. J.; Furukawa, H.; Banerjee, R.; Yaghi, O. M.,
Crystals as Molecules: Postsynthesis Covalent Functionalization of Zeolitic
Imidazolate Frameworks. Journal of the American Chemical Society 2008, 130
(38), 12626-12627.
28. Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.;
Bordiga, S.; Lillerud, K. P., A New Zirconium Inorganic Building Brick Forming
Metal Organic Frameworks with Exceptional Stability. Journal of the American
Chemical Society 2008, 130 (42), 13850-13851.
29. Han Yitong, L. I. U. M. L. I. K. Z. U. O. Y. Z. G. Z. Z. G. U. O. X., Preparation
and Application of High Stability Metal-Organic Framework UiO-66. Chinese
Journal of Applied Chemistry 2016, 33 (4), 367-378.
30. Winarta, J.; Shan, B.; McIntyre, S. M.; Ye, L.; Wang, C.; Liu, J.; Mu,
B., A Decade of UiO-66 Research: A Historic Review of Dynamic Structure,
Synthesis Mechanisms, and Characterization Techniques of an Archetypal Metal–
Organic Framework. Crystal Growth & Design 2020, 20 (2), 1347-1362.
31. Homaei, A. A.; Sariri, R.; Vianello, F.; Stevanato, R., Enzyme
immobilization: an update. Journal of Chemical Biology 2013, 6 (4), 185-205.
32. Razzaghi, M.; Homaei, A.; Vianello, F.; Azad, T.; Sharma, T.;
Nadda, A. K.; Stevanato, R.; Bilal, M.; Iqbal, H. M. N., Industrial applications
of immobilized nano-biocatalysts. Bioprocess and Biosystems Engineering 2022,
45 (2), 237-256.
33. Yang, J.; Zhang, F.; Lu, H.; Hong, X.; Jiang, H.; Wu, Y.; Li, Y.,
Hollow Zn/Co ZIF Particles Derived from Core–Shell ZIF-67@ZIF-8 as
Selective Catalyst for the Semi-Hydrogenation of Acetylene. Angewandte Chemie
International Edition 2015, 54 (37), 10889-10893.
34. Lapointe, S.; Sullivan, R.; Sirard, M.-A., Binding of a Bovine Oviductal
Fluid Catalase to Mammalian Spermatozoa1. Biology of Reproduction 1998, 58
(3), 747-753.
60
35. Chen, S.-Y.; Lo, W.-S.; Huang, Y.-D.; Si, X.; Liao, F.-S.; Lin, S.-W.;
Williams, B. P.; Sun, T.-Q.; Lin, H.-W.; An, Y.; Sun, T.; Ma, Y.; Yang,
H.-C.; Chou, L.-Y.; Shieh, F.-K.; Tsung, C.-K., Probing Interactions between
Metal–Organic Frameworks and Freestanding Enzymes in a Hollow Structure.
Nano Letters 2020, 20 (9), 6630-6635.
36. Liao, F.-S.; Lo, W.-S.; Hsu, Y.-S.; Wu, C.-C.; Wang, S.-C.; Shieh,
F.-K.; Morabito, J. V.; Chou, L.-Y.; Wu, K. C. W.; Tsung, C.-K., Shielding
against Unfolding by Embedding Enzymes in Metal–Organic Frameworks via a
de Novo Approach. Journal of the American Chemical Society 2017, 139 (19),
6530-6533.
37. Das, A.; Mukhopadhyay, C., Urea-Mediated Protein Denaturation: A
Consensus View. The Journal of Physical Chemistry B 2009, 113 (38), 12816-
12824.
38. Liang, W.; Xu, H.; Carraro, F.; Maddigan, N. K.; Li, Q.; Bell, S. G.;
Huang, D. M.; Tarzia, A.; Solomon, M. B.; Amenitsch, H.; Vaccari, L.;
Sumby, C. J.; Falcaro, P.; Doonan, C. J., Enhanced Activity of Enzymes
Encapsulated in Hydrophilic Metal–Organic Frameworks. Journal of the
American Chemical Society 2019, 141 (6), 2348-2355.
39. Bragg, W. H.; Bragg, W. L., The reflection of X-rays by crystals. Proceedings
of the Royal Society of London. Series A, Containing Papers of a Mathematical
and Physical Character 1997, 88 (605), 428-438.
40. Shaw, D. J., 7 - Charged interfaces. In Introduction to Colloid and Surface
Chemistry (Fourth Edition), Shaw, D. J., Ed. Butterworth-Heinemann: Oxford,
1992; pp 174-209.
41. Kaszuba, M.; Corbett, J.; Watson, F. M.; Jones, A., High-concentration
zeta potential measurements using light-scattering techniques. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences 2010, 368 (1927), 4439-4451.
42. Han, Y.; Liu, M.; Li, K.; Sun, Q.; Song, C.; Zhang, G.; Zhang, Z.;
Guo, X., Cu2O Mediated Synthesis of Metal–Organic Framework UiO-66 in
Nanometer Scale. Crystal Growth & Design 2017, 17 (2), 685-692.
43. He, Y.; Tang, Y. P.; Ma, D.; Chung, T.-S., UiO-66 incorporated thin-film
nanocomposite membranes for efficient selenium and arsenic removal. Journal of
Membrane Science 2017, 541, 262-270.
44. Shieh, F.-K.; Wang, S.-C.; Yen, C.-I.; Wu, C.-C.; Dutta, S.; Chou,
L.-Y.; Morabito, J. V.; Hu, P.; Hsu, M.-H.; Wu, K. C. W.; Tsung, C.-K.,
Imparting Functionality to Biocatalysts via Embedding Enzymes into Nanoporous
Materials by a de Novo Approach: Size-Selective Sheltering of Catalase in Metal–
61
Organic Framework Microcrystals. Journal of the American Chemical Society
2015, 137 (13), 4276-4279.
45. Bradford, M. M., A rapid and sensitive method for the quantitation of
microgram quantities of protein utilizing the principle of protein-dye binding.
Analytical Biochemistry 1976, 72 (1), 248-254.
46. de Moreno, M. R.; Smith, J. F.; Smith, R. V., Mechanism Studies of
Coomassie Blue and Silver Staining of Proteins. Journal of Pharmaceutical
Sciences 1986, 75 (9), 907-911.
47. Jiang, Z.-Y.; Woollard, A. C. S.; Wolff, S. P., Hydrogen peroxide production
during experimental protein glycation. FEBS Letters 1990, 268 (1), 69-71.
48. Chen, G.; Kou, X.; Huang, S.; Tong, L.; Shen, Y.; Zhu, W.; Zhu,
F.; Ouyang, G., Modulating the Biofunctionality of Metal–Organic-FrameworkEncapsulated Enzymes through Controllable Embedding Patterns. Angewandte
Chemie International Edition 2020, 59 (7), 2867-2874.
49. Chen, G.; Huang, S.; Kou, X.; Zhu, F.; Ouyang, G., Embedding
Functional Biomacromolecules within Peptide-Directed Metal–Organic
Framework (MOF) Nanoarchitectures Enables Activity Enhancement.
Angewandte Chemie International Edition 2020, 59 (33), 13947-13954.
50. Maddigan, N. K.; Tarzia, A.; Huang, D. M.; Sumby, C. J.; Bell, S. G.;
Falcaro, P.; Doonan, C. J., Protein surface functionalisation as a general strategy
for facilitating biomimetic mineralisation of ZIF-8. Chemical Science 2018, 9 (18),
4217-4223.
51. Tong, L.; Huang, S.; Shen, Y.; Liu, S.; Ma, X.; Zhu, F.; Chen, G.;
Ouyang, G., Atomically unveiling the structure-activity relationship of
biomacromolecule-metal-organic frameworks symbiotic crystal. Nature
Communications 2022, 13 (1), 951.
52. Kumar, A.; Dixit, C. K., 3 - Methods for characterization of nanoparticles. In
Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids, Nimesh,
S.; Chandra, R.; Gupta, N., Eds. Woodhead Publishing: 2017; pp 43-58.
53. Lv, Y.; Liang, Q.; Li, Y.; Li, X.; Liu, X.; Zhang, D.; Li, J., Effects of
metal ions on activity and structure of phenoloxidase in Penaeus vannamei.
International Journal of Biological Macromolecules 2021, 174, 207-215.
54. Banaszak, L. J.; Watson, H. C.; Kendrew, J. C., The binding of cupric and
zinc ions to crystalline sperm whale myoglobin. Journal of Molecular Biology
1965, 12 (1), 130-137.
指導教授 謝發坤 審核日期 2023-8-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明