博碩士論文 111226077 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.190.217.134
姓名 張澤夫(Tse-Fu Chang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 建立人體皮膚反射光譜光學模型之研究
(Study of Optical Model for Reflectance Spectrum of Human Skin)
相關論文
★ 高動態範圍影像式照度即時檢測系統★ 五十米級固態光源用於舞台投射系統之研究
★ 精準色彩取像與顯示系統之設計與製作★ 符合多種道路路面需求之通用型路燈設計
★ 非正交多區塊反射鏡車頭燈之設計★ 歐規單一光學反光鏡之高亮度近遠燈研究
★ 反射率光譜混色模型應用於印表機校色之研究★ 用於紫外光曝光系統之石英透鏡陣列設計與驗證
★ 陣列式燈具光學特性快速量測之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文中,詳細討論可見光線進入照射皮膚之後的總反射行為,將考慮包含折射、吸收、散射、與表面反射等光學特性,以此建立人體皮膚之光學模型,最後以此光學模型模擬出人體皮膚反射率,並且與文獻中各實驗結果做對比。首先,現今的皮膚光學模型與實驗實際量測的數據,存在相當程度的不一致,參考其他文獻比對外,本論文也針對不一致的部份,進行深入的探討。最後,由皮膚模型中各項參數對皮膚整體反射率的影響分析,調整皮膚光學模型參數,使得模擬程序得致與實際量測整體反射率結果更為接近,完成人體皮膚反射光譜光學模型之建立。
摘要(英) In this thesis, a detailed study on the optical model of human skin for simulation has been extensively executed. The optical model is to simulate the total reflection for the light rays illuminating on the human skin, in which the involved interactions are including the refraction, the absorption, the scattering, and the reflection. Some measuring data in experiments from previous other works are collected and applied for the verification on the optical model. Actually, the deviation between the previous proposed optical skin models and the experimental data is found to be heavily serious. After executing a detailed exploration on the simulated total reflection upon each parameter, an effective parameter set and the simulation procedure has been concluded in high accordance with the realistic measuring data.
關鍵字(中) ★ 皮膚光學模型
★ 皮膚反射率
關鍵字(英) ★ Skin optical model
★ skin reflectance
論文目次 目錄
摘要 i
Abstract ii
目錄 iii
第一章 緒論 1
1-1 皮膚光學模型 1
1-2 研究動機 8
第二章 基礎原理 9
2-1 反射 9
2-2 折射 11
2-3 吸收係數與比爾-朗伯定律 11
2-4 Rayleigh & Mie散射係數與各向異性係數 15
2-5 蒙地卡羅演算法 20
2-6 皮膚層狀結構 21
第三章 皮膚數據收集與分析 29
3-1 量測皮膚反射率與模擬皮膚光學模型反射率 29
3-2 模擬結果與實驗比較 37
3-3 表皮層理論 39
3-3-1 模型與量測差異原因探討 42
3-4 吸收不均勻性 45
3-5 散射不均勻性 52
3-6 折射率分佈不均勻性 55
3-6-1 混合物折射率計算 55
3-6-2 折射率分佈不均勻對量測的影響 59
3-7 皮膚折射率光譜 61
3-8 討論 63
第四章 皮膚光學模型參數改變對整體反射率之影響 65
4-1 厚度 65
4-2 折射率 66
4-3 約化散射係數 66
4-4 吸收係數 69
4-5 模型參數最佳化 73
4-6 討論 80
第五章 結論 81
參考文獻 83
中英文名詞對照表 89
參考文獻 參考文獻
1. F. Figge, G. Weiland and L. Manganiello, “Cancer detection and therapy. Affinity of neoplastic, embryonic, and traumatized tissues for porphyrins and metalloporphyrins,” Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine 68, 640 (1948).
2. K. H. Schulz, A. Wiskemann and K. Wulf, “Clinical and experimental studies on photodynamic efficacy of phenothiazine derivatives with special reference to megaphen,” Archiv Fur Klinische und Experimentelle Dermatologie 202, 285-98 (1956).
3. P. McGuff Paul, R. Deterling, L. Gottlieb, H. Fahimi, D. Bushnell and F. Roeber, “The laser treatment of experimental malignant tumours,” Canadian Medical Association Journal 91, 1089-95 (1964).
4. A. Maggiora and H. Lozeron, “The role of the irradiation time in dermatological radiotherapy,” Dermatologica 133, 21-7 (1966).
5. A. B. Hertzman, “The blood supply of various skin areas as estimated by the photoelectric plethysmograph,” American Journal of Physiology 124, 328-340 (1938).
6. A. B. Hertzman and J. B. Dillon, “Applications of photoelectric plethysmography in peripheral vascular disease,” American Heart Journal 20, 750-761 (1940).
7. E. Bernstein, “Laser tattoo removal,” Seminars in Plastic Surgery 21, 175-92 (2007).
8. K. Burris and K. Kim, “Tattoo removal,” Clinics in Dermatology 25, 388-392 (2007).
9. J. Berry, “Recurrent trichiasis: treatment with laser photocoagulation,” Ophthalmic Surgery 10, 36-8 (1979).
10. J. H. Johnston, D. M. Jensen, W. Mautner and J. Elashoff, “YAG laser treatment of experimental bleeding canine gastric ulcers,” Gastroenterology 79, 1252-1261 (1980).
11. A. N. Takata, L. Zaneveld, and W. Richter, “Laser-induced thermal damage in skin,” USAF School of Aerospace Medicine, Brooks Air Force Base, TX, (1977).
12. J. Marshall, “Thermal and mechanical mechanisms in laser damage to the retina,” Investigative Ophthalmology 9, 97-115 (1970).
13. N. S. Lucas, “The permeability of human epidermis to ultra-violet irradiation,” The Biochemical Journal 25, 57-70 (1931).
14. S. Wan, R. R. Anderson and J. A. Parrish, “Analytical modeling for the optical properties of the skin with in vitro and in vivo applications,” Photochemistry and Photobiology 34, 493-499 (1981).
15. P. Kubelka and M. Franz, “An Article on Optics of Paint Layers.” (2004)
16. SYNOPSYS website, “LightTools,” https://www.synopsys.com/zh-tw/optical-solutions/lighttools.html.
17. T. Spott, L. Svaasand, R. Anderson and P. Schmedling, “Application of optical diffusion theory to transcutaneous bilirubinometry,” Proceedings of SPIE - The International Society for Optical Engineering 3195, (1998).
18. A. Bjorgan, M. Milanic and L.L. Randeberg, “Estimation of skin optical parameters for real-time hyperspectral imaging applications,” J Biomed Opt. 19, (2014).
19. V. V. Tuchin, “Light scattering study of tissues,” Physics-Uspekhi 40, 495-515 (1997).
20. A. Bashkatov, E. Genina, V. Tuchin, G. Altshuler, and I. Yaroslavsky, “Monte Carlo study of skin optical clearing to enhance light penetration in the tissue: implications for photodynamic therapy of acne vulgaris (Proceedings Paper),” Proceedings of SPIE - The International Society for Optical Engineering 7022, (2008).
21. T. Maeda, N. Arakawa, M. Takahashi and Y. Aizu, “Monte Carlo Simulation of Spectral Reflectance Using a Multilayered Skin Tissue Model,” Optical Review 17, 223–229 (2010).
22. J. A. Iglesias-Guitian, C. Aliaga, A. Jarabo and D. Gutierrez, “A Biophysically-Based Model of the Optical Properties of Skin Aging,” Computer Graphics Forum 34, 45-55 (2015).
23. L.O. Svaasand, L.T.T. Norvang, E.J.J. Fiskerstrand, E.K.S Stopps, M.W, Berns and J.S. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Lasers Med. Sci. 10, 55–65 (1995).
24. G. Altshuler, M. Smirnov and I. Yaroslavsky, “Lattice of optical islets: a novel treatment modality in photomedicine,” J. Phys. D 38, 2732–2747 (2005).
25. S. A. D′Mello, G. J. Finlay, B. C. Baguley and M. E. Askarian-Amiri, “Signaling Pathways in Melanogenesis,” International Journal of Molecular Sciences 17, 1144 (2016).
26. S. Jacques and D. Mcauliffe, “The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation,” Photochemistry and Photobiology 53, 769-75 (1991).
27. I. Meglinski and S. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation,” Physiological Measurement 23, 741-53 (2002).
28. H. Nugroho, H. Mohd, F. Ahmad, R. Jolivot and F. Marzani, “Melanin type and concentration determination using inverse model,” 2011 National Postgraduate Conference - Energy and Sustainability: Exploring the Innovative Minds, NPC 2011, (2011).
29. T. Sarna and H. A. Swartz, The Physical Properties of Melanins (John Wiley & Sons, Ltd, New Jersey, 2006)
30. G. J. Iglesias, C. Aliaga, A. Jarabo and D. Gutiérrez, “A Biophysically-Based Model of the Optical Properties of Skin Aging,” Computer Graphics Forum 34, 45-55 (2015).
31. I. S. Saidi, Transcutaneous optical measurement of hyperbilirubinemia in neonates, Ph.D. dissertation, Rice University, Houston, TX, USA, 1992.
32. S. Jacques, S. A. Prahl and R. Huang, https://omlc.org
33. C. Mignon, D. Tobin, M. Zeitouny and N. Uzunbajakava, “Shedding light on the variability of optical skin properties: Finding a path towards more accurate prediction of light propagation in human cutaneous compartments,” Biomedical Optics Express 9, 852 (2018).
34. D. Miyazaki, Fresnel Equations (Springer US, Boston, 2014).
35. 孫慶成,光電工程概論 (全華圖書股份有限公司,新北市,2012)。
36. H. Uchtmann, S. Kazitsyna, S. Baranovskii, F. Hensel and M. Rudek, “Light-induced nucleation and optical absorption in cesium vapor,” The Journal of Chemical Physics 113, 4171-4178 (2000).
37. T. Dominique, “Henyey–Greenstein and Mie phase functions in Monte Carlo radiative transfer computations,” Appl. Opt. 35, 3270-3274 (1996).
38. M. J. Gemert, S. Jacques, S. Henricus and M. Star, “Skin Optics,” IEEE Transactions on Bio-Medical Engineering 36, 1146-54 (1990).
39. Y. Shimojo, T. Nishimura, H. Hazama, T. Ozawa and K. Awazu, “Measurement of absorption and reduced scattering coefficients in Asian human epidermis, dermis, and subcutaneous fat tissues in the 400- to 1100-nm wavelength range for optical penetration depth and energy deposition analysis,” Journal of Biomedical Optics 26, (2021).
40. A. Grubb, “Shrunken pore syndrome - a common kidney disorder with high mortality. Diagnosis, prevalence, pathophysiology and treatment options,” Clinical Biochemistry 83, 12-20 (2020).
41. D. Monica, M. Dao, J. Han, C.T. Lim and S. Suresh, “Shape and Biomechanical Characteristics of Human Red Blood Cells in Health and Disease,” MRS Bulletin 35, 382-388 (2010).
42. Lord Rayleigh, “X. On the electromagnetic theory of light,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 12, 81-101 (1881).
43. Lord Rayleigh, “XXXIV. On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 47, 375-384 (1899).
44. S. Rotter, S. Gigan, “Light fields in complex media: Mesoscopic scattering meets wave control,” Rev. Mod. Phys. 89, 015005 (2017).
45. Hon. J.W. Strutt, “LVIII. On the scattering of light by small particles,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 41, 447-454 (1871).
46. S. Jacques, “Origins of tissue optical properties in the UVA, Visible, and NIR regions,” Advances in Optical Imaging and Photon Migration 2, 364-369 (1996).
47. N. Metropolis and S. Ulam, “The Monte Carlo method,” Journal of the American Statistical Association 44, 335-341 (1949).
48. J. M. Hammersley, “Monte Carlo methods for solving multivariable problems,” Annals of the New York Academy of Sciences 86, 844-874 (1960).
49. Embedded Computing Design website, https://embeddedcomputing.com/application/healthcare/how-to-choose-the-optimal-wavelength-for-your-biosensor-application.
50. S. Jane, T. Poulsen and H. Wulf, “Epidermal Thickness at Different Body Sites: Relationship to Age, Gender, Pigmentation, Blood Content, Skin Type and Smoking Habits,” Acta Dermato-Venereologica 83, 410-3 (2003).
51. A. Korosec, S. Frech and B. Lichtenberger, “Isolation of Papillary and Reticular Fibroblasts from Human Skin by Fluorescence-activated Cell Sorting,” Journal of Visualized Experiments 2019, (2019).
52. W. Kim, S. Chung, T. Kim and K. Seo, “Measurement of soft tissue compliance with pressure using ultrasonography,” Lymphology 41, 167-77 (2009).
53. N. Nakagawa, M. Matsumoto and S. Sakai, “In vivo measurement of the water content in the dermis by confocal Raman spectroscopy,” Skin Research and Technology: Official Journal of International Society for Bioengineering and the Skin (ISBS) 16, 137-41 (2010).
54. T. Abe, R. Thiebaud and J. Loenneke , “The mysterious values of adipose tissue density and fat content in infants: MRI-measured body composition studies,” Pediatric Research 90, 1-3 (2021).
55. S. Jacques, “Optical Properties of Biological Tissues: A Review,” Physics in Medicine and Biology 58, R37-R61 (2013).
56. V. Petri and Y. F. Sun, “Human skin and Human blood,” http://www.npsg.uwaterloo.ca/index.php
57. W. Stahl and H. Sies, “Beta-Carotene and other carotenoids in protection from sunlight,” The American Journal of Clinical Nutrition 96, 1179S-84S (2012).
58. R. Saager, M. Balu, C. Viera, A. Sharif, A. Durkin, K. Kelly and B. Tromberg, “In vivo measurements of cutaneous melanin across spatial scales: Using multiphoton microscopy and spatial frequency domain spectroscopy,” Journal of Biomedical Optics 20, 66005 (2015).
59. M.A. Lampe, A. Burlingame, J. Whitney, M. Williams, B. Brown, E. Roitman and P. Elias, “Human Stratum Corneum Lipids: Characterization and Regional Variations,” Journal of Lipid Research 24, 120-30 (1983).
60. S. Patwardhan, A. Dhawan and P. Relue, “Monte Carlo Simulation of Light-Tissue Interaction: Three-Dimensional Simulation for Trans-Illumination-Based Imaging of Skin Lesions,” IEEE Transactions on Bio-Medical Engineering 52, 1227-36 (2005).
61. K. Calabro, “Modeling biological tissues in light tools,” Technical Paper, (2020).
62. M. Mendenhall, A. Nunez and R. Martin, “Human skin detection in the visible and near infrared,” Applied Optics 54, 10559 (2015).
63. S. LAMINE, M. Pandey, G. Petropoulos, P. Brewer, P. Srivastava, K. Manevski, L. Toulios and M. Macklin. Spectroradiometry as a Tool for Monitoring Soil Contamination by Heavy Metals in a Floodplain Site (Elsevier, Amsterdam, 2020).
64. D.C. Hatchell, “ASD Technical Guide. 3rd Edition,” Technical Guide, (1999).
65. M. Camaiti, S. Vettori, M. Benvenuti, L. Chiarantini, P. Costagliola, F. Benedetto, S. Moretti, F. Paba and E. Pecchioni, “Hyperspectral sensor for gypsum detection on monumental buildings,” Journal of Geophysics and Engineering 8, S126-S131 (2011).
66. L. L. Randeberg, Diagnostic applications of diffuse reflectance spectroscopy, Ph.D. dissertation, Department of Electronics and Telecommunications, Norwegian University of Science and Technology, 2005.
67. M. Camaiti, S. Vettori, M. Benvenuti, L. Chiarantini, P. Costagliola, F. Benedetto, S. Moretti, F. Paba and E. Pecchioni, “Hyperspectral sensor for gypsum detection on monumental buildings,” Journal of Geophysics and Engineering 8, S126-S131 (2011).
68. H. Jan, N. Jan and A. Jana, “Comparison of Reflectance Measurements Acquired with a Contact Probe and an Integration Sphere: Implications for the Spectral Properties of Vegetation at a Leaf Level,” Sensors (Basel, Switzerland) 16 (2016).
69. H. Kestelman, Modern Theories of Integration (Dover Publications, New York, 1960).
70. A. P. Florian and J. W. Stephen, “Interior-point methods,” Journal of Computational and Applied Mathematics 124 (2000).
71. E. Salomatina, B. Jiang, J. Novak and A.N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11, 64026–64029 (2006).
72. R. Marchesini, C. Clemente, E. Pignoli and M. Brambilla, “Optical properties of in vitro epidermis and their possible relationship with optical properties of in vivo skin,” J. Photochem. Photobiol. B. Biol. 16, 127–140 (1992).
73. B. P. Yakimov, E. A. Shirshin, J. Schleusener, A. S. Allenova, V. V. Fadeev and M. E. Darvin, “Melanin distribution from the dermal-epidermal junction to the stratum corneum: non-invasive in vivo assessment by fluorescence and Raman microspectroscopy,” Scientific Reports 10, 14374 (2020).
74. S. Prahl, “Inverse Adding-Doubling,” https://github.com/scottprahl/iad/releases.
75. S. Weiye, Z. Lei, N. Steve, and Y. Ji, “Wavelength-dependent optical properties of melanosomes in retinal pigmented epithelium and their changes with melanin bleaching: a numerical study,” Biomed. Opt. Express 8, 3966-3980 (2017).
76. R. Clausius, Die Mechanische Behandlung der Elektricität (Vieweg, Braunschweig, 1858).
77. O. F. Mossotti, Memorie di Matematica e di Fisica della Societa Italiana delle Scienze Residente in Modena (1850).
78. H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Physics in Medicine and Biology 51, 1479–1489 (2006).
79. K. Levenberg, “A method for the solution of certain non-linear problems in least squares,” Quarterly of Applied Mathematics 2, 164-168 (1944).
指導教授 楊宗勳 孫慶成(Tsung-Hsun Yang Ching-Cherng Sun) 審核日期 2023-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明