博碩士論文 111323043 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:3.145.156.250
姓名 楊上賢(Shang-Shian Yang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 電弧噴塗積層製造:Ta/TaN 薄膜物理氣相沉積中腔體襯套翻新與顆粒缺陷減少相關性研究
(Arc spray-additive manufacturing: Correlation of Chamber Kits Refurbishing and Particle Defects Reduction in Ta/TaN Thin-Film Physical Deposition Processes)
相關論文
★ 以磁場模擬法設計磁鐵排列改善濺鍍機台之填洞能力★ 高頻RF感應加熱器應用於MOCVD承載盤之均溫性探討分析
★ 局域性表面電漿效應應用於增益有機發光二極體發光強度之參數優化研究★ 最佳化設計金屬有機化學氣相沉積高溫加熱系統數值分析研究
★ 以濺鍍CIG三元靶調變硒化製程壓力製作CIGS太陽能電池之特性分析★ 最佳化OLED面型蒸鍍加熱器設計與腔體流場數值分析
★ 以電漿診斷探討電漿輔助化學氣相沉積系統之製程環境優化對氫化非晶矽鈍化品質之影響★ 電漿診斷系統輔助化學氣相沉積之鈍化層薄膜製程區間研究
★ 以數值分析法分析氮化鎵薄膜沉膜機制之探討暨實作驗證★ 以RTP硒化法探討CIS薄膜及元件特性之研究
★ 局域性表面電漿共振效應應用於OLED出光增益之研究★ TE模式電子迴旋共振化學氣相沉積之矽薄膜電漿光譜研究
★ TE 微波模式電子迴旋共振化學氣相沉積於大面積非晶矽薄膜均勻度之研究★ 自製蘭牟爾探針診斷TE微波模式電子迴旋共振電漿
★ 以噴塗技術在不銹鋼基板上沉積氧化矽阻隔層應用於可撓式CIGS太陽電池之研究★ 使用電子迴旋共振化學氣相沉積製備異質接面太陽能電池表面鈍化氫化非晶矽薄膜之製程參數研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 物理氣相沉積(PVD)的鉭/氮化鉭(Ta/TaN)作為半導體製造中的銅互連部分中的擴散阻擋層和襯墊在起著至關重要的作用,特別是在130奈至5奈米及更高技術節點上。本論文專注於電弧噴塗積層製造(ASAM)塗層在PVD腔體襯套(chamber kit)翻新過程中的表面製備和特徵對於PVD Ta/TaN 製程中顆粒缺陷的影響。通過使用噴砂預處理基材,創造合適的表面紋理,以及將純鋁(99.8%)替換為鋁合金作為ASAM塗層材料,用以增強噴塗塗層的附著力。然而實驗結果顯示使用高附著力的塗層會增加kit壽命中期發生缺陷失控(OOC)的概率。這種現象的根本原因可能歸因於ASAM塗層的尖點狀表面形態。使用有限元分析模擬應力分佈並觀察多層Ta/TaN薄膜中的應力集中區域,並比較不同表面形態的兩種ASAM塗層。數值模擬和實驗觀察顯示,ASAM塗層表面形態顯著影響薄膜分層,這是顆粒缺陷的主要原因。本研究強調了理解形成顆粒缺陷的潛在機制的重要性,並強調了改善噴塗塗層的均勻性和增加表面曲率半徑以減少應力集中的重要性。
摘要(英) Physical Vapor Deposition(PVD) of Tantalum/Tantalum Nitride (Ta/TaN) barrier and liner plays a crucial role in the copper-interconnecting part of semiconductor manufacturing, and this will be used for the 130nm-5nm technology node and beyond. This study focuses on the surface preparation and characterization of arc spray-additive manufacturing (ASAM) coating in the refurbishment process of PVD chamber kits. Spray coating adhesion strength is enhanced due to the pre-treatment of the substrate with grit blasting, which creates a suitable surface texture, and the replacement of aluminum alloy as an ASAM coating material from pure aluminum (99.8%). However, it was experimentally found that using high adhesion strength coating chamber kits increases the probability of out-of-control (OOC) occurrences in the mid-stage of the kit lifetime, and the fundamental reasons may be attributed to the spiky surface morphology of ASAM coating layers. Finite element analysis simulates stress distribution and identifies stress concentration regions within the multilayer Ta/TaN thin film using two surface morphologies with significantly different curvature radii of spray coatings. Differences in ASAM processing parameters include a slower travel speed, a longer spray time, and a lower feed rate. It is numerically simulated and experimentally observed that spray coating surface morphology dramatically affects thin film delamination, which is the primary cause of particle defects. This study emphasizes the potential mechanisms for forming particle defects, improved uniformity in spray coatings, and increased surface curvature radius to minimize stress concentration.
關鍵字(中) ★ 半導體製造
★ Ta/TaN
★ 電弧噴塗積層製造(ASAM)
★ 有限元分析
★ 薄膜分層
關鍵字(英) ★ Semiconductor manufacturing
★ Ta/TaN
★ Arc spray-additive manufacturing (ASAM)
★ Finite element analysis
★ Film delamination
論文目次 摘 要 i
ABSTRACT iii
誌 謝 v
目 錄 vii
圖目錄 List of Figures x
表目錄 List of Tables xii
一 、緒 論 1
1-1 前言 1
1-2 研究動機與目的 3
二 、研究理論與背景介紹 5
2-1 物理氣相沉積(PVD) 5
2-2 濺鍍(Sputter)薄膜沉積原理與設備保養 6
2-3 電弧噴塗積層製造(ASAM) 7
2-4 ASTM-C633 試驗方法 9
2-5 塗層之附著力與kit使用壽命之關係 10
2-6 顆粒缺陷之監測 11
三 、研究方法 13
3-1 實驗流程 13
3-2 實驗方法 14
3-2-1 試片準備 14
3-2-2 試片噴砂處理 16
3-2-3 電弧噴塗鋁塗層沉積 17
3-2-4 塗層附著力強度測試 19
3-2-5 腔體襯套顆粒缺陷監測 20
3-3 實驗裝置與量測 21
3-3-1 電弧噴塗積層製造(ASAM) 21
3-3-2 表面粗糙度測量儀 23
3-3-3 掃描式電子顯微鏡 25
3-3-4 拉伸試驗機 28
3-3-5 PVD Ta/TaN製程顆粒缺陷監測 30
四 、實驗結果與討論 32
4-1 試片噴砂處裡之表面和電弧噴塗之塗層橫截面 32
4-2 塗層附著力強度測試 36
4-3 PVD腔體襯套與製程缺陷監控 39
4-4 Ta/TaN薄膜與腔體襯套表面的CTE不匹配應力模擬 42
4-5 改善方案 47
4-6 氣孔逃逸的機制與導致塗層表面尖峰的關係 51
4-7 薄膜剝落的潛在機制 53
五、結 論 55
參考文獻 57
附件 62
參考文獻 [1] S. Rossnagel and H. Kim, "Diffusion barrier properties of very thin TaN with high nitrogen concentration," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 21, no. 6, pp. 2550-2554, 2003.
[2] S. M. Rossnagel, "Characteristics of ultrathin Ta and TaN films," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 20, no. 6, pp. 2328-2336, 2002.
[3] K. Holloway and P. M. Fryer, "Tantalum as a diffusion barrier between copper and silicon," Applied Physics Letters, vol. 57, no. 17, pp. 1736-1738, 1990.
[4] M. Stavrev, D. Fischer, F. Praessler, C. Wenzel, and K. Drescher, "Behavior of thin Ta-based films in the Cu/barrier/Si system," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 17, no. 3, pp. 993-1001, 1999.
[5] H. Wojcik et al., "Cu barrier properties of very thin Ta and TaN films," in IEEE International Interconnect Technology Conference, 2014: IEEE, pp. 167-170.
[6] M. Watson and R. Gansert, "Influence of thermal spray parameters on two-wire arc aluminum semiconductor equipment coatings," in ITSC 2012, 2012: ASM International, pp. 393-396.
[7] A. Kumar, N. Bhattacharjee, B. Patel, J.-B. Laloë, O. O. Famodu, and I. Ferain, "Strategies for Reducing Particle Defects in Ti and TiN Thin-Film Deposition Processes," IEEE Transactions on Semiconductor Manufacturing, vol. 32, no. 1, pp. 48-53, 2018.
[8] P. Panjan, A. Drnovšek, P. Gselman, M. Čekada, and M. Panjan, "Review of growth defects in thin films prepared by PVD techniques," Coatings, vol. 10, no. 5, p. 447, 2020.
[9] T.-K. Lin, D.-S. Wuu, S.-Y. Huang, and W.-K. Wang, "Preparation and characterization of sprayed-yttrium oxyfluoride corrosion protective coating for plasma process chambers," Coatings, vol. 8, no. 10, p. 373, 2018.
[10] R. M. H. Pombo Rodriguez, R. S. C. Paredes, S. H. Wido, and A. Calixto, "Comparison of aluminum coatings deposited by flame spray and by electric arc spray," Surface and Coatings Technology, vol. 202, no. 1, 2007.
[11] M. H. Abd Malek, N. H. Saad, S. K. Abas, N. N. Roselina, and N. M. Shah, "Performance and microstructure analysis of 99.5% aluminium coating by thermal arc spray technique," Procedia Engineering, vol. 68, pp. 558-565, 2013.
[12] M. Watson and R. Gansert, "Parameters affecting bond strength and surface roughness in twin-wire arc spray aluminum coatings," Advanced Materials & Processes, vol. 168, no. 5, pp. 46-47, 2010.
[13] T. Hauser et al., "Porosity in wire arc additive manufacturing of aluminium alloys," Additive Manufacturing, vol. 41, p. 101993, 2021.
[14] I. Gedzevicius and A. V. Valiulis, "Analysis of wire arc spraying process variables on coatings properties," Journal of Materials Processing Technology, vol. 175, no. 1-3, pp. 206-211, 2006.
[15] B. Dong et al., "Wire arc additive manufacturing of Al-Zn-Mg-Cu alloy: microstructures and mechanical properties," Additive Manufacturing, vol. 36, p. 101447, 2020.
[16] J. N. Ndumia, M. Kang, B. V. Gbenontin, J. Lin, and S. M. Nyambura, "A review on the wear, corrosion and high-temperature resistant properties of wire arc-sprayed Fe-based coatings," Nanomaterials, vol. 11, no. 10, p. 2527, 2021.
[17] M. Hafiz Abd Malek, N. Hayati Saad, S. Kiyai Abas, and N. Mohd Shah, "Thermal arc spray overview," in Materials Science and Engineering Conference Series, 2013, vol. 46, no. 1, p. 012028.
[18] A. S. f. Testing and Materials, "Standard test method for adhesion or cohesion strength of thermal spray coatings," 2001: ASTM West Conshohocken (PA.
[19] H. Fukanuma and N. Ohno, "A study of adhesive strength of cold spray coatings," in ITSC2004, 2004: ASM International, pp. 329-334.
[20] A. Nastic, M. Vijay, A. Tieu, S. Rahmati, and B. Jodoin, "Experimental and numerical study of the influence of substrate surface preparation on adhesion mechanisms of aluminum cold spray coatings on 300M steel substrates," Journal of Thermal Spray Technology, vol. 26, no. 7, pp. 1461-1483, 2017.
[21] R. Kromer, S. Costil, C. Verdy, S. Gojon, and H. Liao, "Laser surface texturing to enhance adhesion bond strength of spray coatings–Cold spraying, wire-arc spraying, and atmospheric plasma spraying," Surface and Coatings Technology, vol. 352, pp. 642-653, 2018.
[22] H. Wang, Y. He, and C. C. Stow, "Method of cleaning a coated process chamber component," Patent US 6,902,628 B2 Patent Appl. 10/304,535, 2005.
[23] J. Zhu et al., "Optical wafer defect inspection at the 10 nm technology node and beyond," International Journal of Extreme Manufacturing, vol. 4, no. 3, p. 032001, 2022.
[24] M. M. Altamirano and A. Skumanich, "Enhanced defect detection capability using combined brightfield/darkfield imaging," in In-Line Characterization Techniques for Performance and Yield Enhancement in Microelectronic Manufacturing II, 1998, vol. 3509: SPIE, pp. 60-64.
[25] K. Selinidis, E. Thompson, I. McMackin, S. Sreenivasan, and D. J. Resnick, "High-resolution defect inspection of step-and-flash imprint lithography for 32-nm half-pitch patterning," in Alternative Lithographic Technologies, 2009, vol. 7271: SPIE, pp. 519-529.
[26] C. Perry-Sullivan, C. Chua, and M. McLaren, "The winning streak: advanced darkfield inspection for 65 nm design rules and below," Proc. Yield Management Solutions 2006, pp. 48-55, 2006.
[27] B. T. West, J. W. Boyd, and S. Tan, "Lavacoat pre-clean and pre-heat," Patent WO2010039760A3, 2010.
[28] A. Moridi, H. Ruan, L. Zhang, and M. Liu, "Residual stresses in thin film systems: Effects of lattice mismatch, thermal mismatch and interface dislocations," International Journal of Solids and Structures, vol. 50, no. 22-23, pp. 3562-3569, 2013.
[29] W. Fang and C.-Y. Lo, "On the thermal expansion coefficients of thin films," Sensors and Actuators A: Physical, vol. 84, no. 3, pp. 310-314, 2000.
[30] J. Chang, G.-P. Zhao, X.-L. Zhou, K. Liu, and L.-Y. Lu, "Structure and mechanical properties of tantalum mononitride under high pressure: A first-principles study," Journal of Applied Physics, vol. 112, no. 8, p. 083519, 2012.
[31] L. Zhou et al., "Microstructure tailoring to enhance strength and ductility in pure tantalum processed by selective laser melting," Materials Science and Engineering: A, vol. 785, p. 139352, 2020.
指導教授 利定東(Ting-Tung Li) 審核日期 2023-12-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明