博碩士論文 111323603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:44.222.64.76
姓名 蔡逸文(Christopher Reinaldo)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱
(Formulation of a New Index for the Evaluation of Mechanism Workspace)
相關論文
★ 神經內視鏡的球面解耦機械手臂設計★ 新型機電整合之多色3-D列印機
★ Workspace Characterization of a 3-RRR Spherical Parallel Mechanism★ 對於遠程超聲波檢查機器人機械手控制裝置的設計
★ Design of a Spherical Reconfigurable Linkage for the Control of Mechanism Center of Rotation★ Kinematic Optimization of a Reconfigurable Spherical Parallel Mechanism for Robotic Assisted Craniotomy
★ Identification of Spherical Mechanism Parameter Errors using a Genetic Algorithm★ Kinematic Design of Double Pantographic Linkage for the Tele-Echography on Intra-Incubated Newborns
★ Design of a Five-Degrees of Freedom Statically Balanced Mechanism with Multi-Directional Functionality★ 應用於股骨復位手術中之機器人機構設計
★ Design of an Augmented Clamping Instrument for Advanced Aneurysm Surgery★ Contribution to the Design of a Robotic Platform for Liposuction
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 機構的工作空間被定義為其末端受動器所可以到達的區域。當一種新型機器人機構問世時,對其可達到的工作空間通常也會包含在其理論分析中。一些研究提出了專門用於評估機構性能的指標,如條件數或傳輸指數,它們都重點專注於工作空間內的性能。工作空間本身對於具有超過3自由度(DoF)的機構來說很難去表示。而本研究主要集中探討在工作空間本身及其演變方式。
因此,一種新的工作空間演變指數(WEI)由此而被規範出來。該指數可以表示線性工作空間在角度工作空間中的演變,反之亦然。WEI由兩種方法決定:基於平均值的指數及基於範數的指數。基於平均值的指數表示透過從某個坐標移動的方式,來判斷機構將平均獲得或是失去工作空間。基於範數的指數將顯示在某個坐標處,其工作空間的變化。在此文章中,將對於三自由度(DoF)平面機構,3-RRR和3-RPR進行更進一步地探討,並使用WEI以及WEI和條件數的組合方式來進行比較。而後會進行更深入的研究,對三自由度空間機構進行了深入探討:3-RPS 和 3-PSP 機構,以及六自由度空間機構:3-PRP-3-RPS 和 3-RPS-3-PRP。
摘要(英) The workspace of a mechanism is defined as the region in which its end effector can reach. When a novel robotic mechanism is reported, the study on the workspace it can reach is included in its theoretical analysis. Several studies proposed indexes to evaluate the performance of a mechanism with indexes such as the condition number or transmission index, both of them focused on the performance of the mechanism within its workspace. The workspace itself is difficult to represent for mechanism with more than 3 DoF. This present study mainly focuses on the workspace itself on how it evolves.
A new Workspace Evolution Index (WEI) is formulated. This index can indicate either how the linear workspace evolves in the angular workspace or vice versa. The WEI is determined by two methods: the mean-based index and the norm-based index. The mean-based index indicates that by moving from a certain coordinate a mechanism will indicate average gain or lose workspace. The norm-based index will show the variation of the workspace at a certain coordinate. In this study the WEI will be used to evaluate parallel mechanisms: three degrees of freedom (DoF) planar mechanisms, 3-RRR and 3-RPR which are investigated and its results are compared using the WEI, and combinations of WEI and condition number, three DoF spatial mechanisms: 3-RPS and 3-PSP mechanism, and the six-DoF spatial mechanisms: 3-PRP-3-RPS and 3-RPS-3-PRP.
關鍵字(中) ★ 並聯機構;平面機構;三腳架機構;工作空間 關鍵字(英) ★ Parallel mechanism;planar mechanism;spatial mechanism;Workspace
論文目次 摘要 i
Abstract ii
Acknowledgments iii
Table of Content iv
List of Figures v
List of Tables vi
Explanation of Symbols vii
1 Introduction 1
1-1 Mechanism Workspace Analysis 1
1-2 Workspace Problems and Objective of the Study 3
2 Workspace Evolution Index 8
2-1 Index Formulation 8
2-1-1 Workspace Evolution Index 8
2-1-2 Workspace Conditions 10
2-2 Index Analysis and Illustration 13
2-2-1 Planar Mechanisms Comparison 13
2-2-2 Application and Result 16
3 Application to Tripod Spatial Mechanisms 27
3-1 3-DoF Spatial Mechanism Comparison 27
3-2 Analysis and Results 30
4 Application to 6-DoF Hybrid Mechanisms 35
4-1 Kinematic analysis of the Hybrid Six-DoF Mechanisms 35
4-2 Workspace Analysis of Hybrid Mechanisms 37
5 Conclusion 40
Reference 42
參考文獻 [1] S. Patel and T. Sobh, “Task based synthesis of serial manipulators,” J. Adv. Res., vol. 6, no. 3, pp. 479–492, 2015, doi: https://doi.org/10.1016/j.jare.2014.12.006.
[2] C. Shen, H. Qu, S. Guo, and X. Li, “Kinematics Analysis and Singularity Avoidance of a Parallel Mechanism with Kinematic Redundancy,” Chinese J. Mech. Eng., vol. 35, no. 1, p. 113, 2022, doi: 10.1186/s10033-022-00793-2.
[3] H. Shen, Y. Zhao, G. Wu, J. Li, and D. Chablat, “Kinematic design of a translational parallel mechanism based on sub-kinematic chain determined workspace superposition,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., p. 095440622110046, May 2021, doi: 10.1177/09544062211004653.
[4] C. Reinaldo, S. N. Phu, T. Essomba, and L. Nurahmi, “Kinematic Comparisons of Hybrid Mechanisms for Bone Surgery: 3-PRP-3-RPS and 3-RPS-3-PRP,” Machines, vol. 10, no. 11, 2022, doi: 10.3390/machines10110979.
[5] L. Romdhane, “Design and analysis of a hybrid serial-parallel manipulator,” Mech. Mach. Theory, vol. 34, no. 7, pp. 1037–1055, 1999, doi: https://doi.org/10.1016/S0094-114X(98)00079-2.
[6] Q. Liu, W. Tian, B. Li, and Y. Ma, “Kinematics of a 5-axis hybrid robot near singular configurations,” Robot. Comput. Integr. Manuf., vol. 75, p. 102294, 2022, doi: https://doi.org/10.1016/j.rcim.2021.102294.
[7] J.-P. Merlet, C. M. Gosselin, and N. Mouly, “Workspaces of planar parallel manipulators,” Mech. Mach. Theory, vol. 33, no. 1, pp. 7–20, 1998, doi: https://doi.org/10.1016/S0094-114X(97)00025-6.
[8] C. Reinaldo, T. Essomba, and L. Nurahmi, “A New Index for the Evaluation of Mechanism Workspace: Application to Six-DoF Architectures BT - Advances in Mechanism and Machine Science,” 2023, pp. 713–720.
[9] X.-J. Liu, J. Wang, and G. Pritschow, “Kinematics, singularity and workspace of planar 5R symmetrical parallel mechanisms,” Mech. Mach. Theory, vol. 41, no. 2, pp. 145–169, 2006, doi: https://doi.org/10.1016/j.mechmachtheory.2005.05.004.
[10] T. Essomba and L. Nguyen Vu, “Kinematic analysis of a new five-bar spherical decoupled mechanism with two-degrees of freedom remote center of motion,” Mech. Mach. Theory, vol. 119, pp. 184–197, 2018, doi: https://doi.org/10.1016/j.mechmachtheory.2017.09.010.
[11] M. A. Laribi, L. Romdhane, and S. Zeghloul, “Analysis and dimensional synthesis of the DELTA robot for a prescribed workspace,” Mech. Mach. Theory, vol. 42, no. 7, pp. 859–870, 2007, doi: https://doi.org/10.1016/j.mechmachtheory.2006.06.012.
[12] S. HUDA and Y. TAKEDA, “Kinematic Analysis and Synthesis of a 3-URU Pure Rotational Parallel Mechanism with Respect to Singularity and Workspace,” J. Adv. Mech. Des. Syst. Manuf., vol. 1, no. 1, pp. 81–92, 2007, doi: 10.1299/jamdsm.1.81.
[13] M. Z. A. Majid, Z. Huang, and Y. L. Yao, “Workspace Analysis of a Six-Degrees of Freedom, Three-Prismatic- Prismatic-Spheric-Revolute Parallel Manipulator,” Int. J. Adv. Manuf. Technol., vol. 16, no. 6, pp. 441–449, 2000, doi: 10.1007/s001700050176.
[14] S. Nguyen Phu, T. Essomba, I. Idram, and J.-Y. Lai, “Kinematic analysis and evaluation of a hybrid mechanism for computer assisted bone reduction surgery,” Mech. Sci., vol. 10, no. 2, pp. 589–604, 2019, doi: 10.5194/ms-10-589-2019.
[15] T. Essomba and S. N. Phu, “Kinematic design of a hybrid planar-tripod mechanism for bone reduction surgery,” Mech. Ind., vol. 21, no. 4, 2020, [Online]. Available: https://doi.org/10.1051/meca/2020030.
[16] I. A. Bonev and J. Ryu, “A new approach to orientation workspace analysis of 6-DOF parallel manipulators,” Mech. Mach. Theory, vol. 36, no. 1, pp. 15–28, 2001, doi: https://doi.org/10.1016/S0094-114X(00)00032-X.
[17] S. Kucuk and Z. Bingul, “Comparative study of performance indices for fundamental robot manipulators,” Rob. Auton. Syst., vol. 54, no. 7, pp. 567–573, 2006, doi: https://doi.org/10.1016/j.robot.2006.04.002.
[18] G. T. Pond and J. A. Carretero, “Quantitative Dexterous Workspace Comparison of Serial and Parallel Planar Mechanisms,” in Parallel Manipulators, J.-H. Ryu, Ed. Rijeka: IntechOpen, 2008.
[19] H. Liu, T. Huang, A. Kecskemethy, and D. Chetwynd, “A generalized approach for computing the transmission index of parallel mechanisms,” Mech. Mach. Theory, vol. 74, pp. 245–256, 2014, doi: 10.1016/j.mechmachtheory.2013.12.012.
[20] Yaskawa America, “MPP3H|MPP3S ROBOTS,” 2015. https://cdn2.hubspot.net/hubfs/366775/Blog_Robots/MPP3H_MPP3S.pdf?t=1539326062420 (accessed Dec. 13, 2023).
[21] F. A. Corporation, “M-1000iA.” https://www.fanucamerica.com/docs/default-source/robotics-files/fanuc-robot-data-sheets/fanuc-m-1000ia-data-sheet.pdf (accessed Dec. 13, 2023).
[22] S. N. Phu and T. Essomba, “Kinematic analysis of an augmented 3-RPSP tripod mechanism with six degrees of freedom for bone reduction surgery,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 236, no. 8, pp. 4059–4072, 2022, doi: 10.1177/09544062211048044.
[23] M. H. Abedinnasab, F. Farahmand, and J. Gallardo-Alvarado, “The Wide-Open Three-Legged Parallel Robot for Long-Bone Fracture Reduction,” J. Mech. Robot., vol. 9, no. 1, Jan. 2017, doi: 10.1115/1.4035495.
[24] S. H. H. Zargarbashi, W. Khan, and J. Angeles, “The Jacobian condition number as a dexterity index in 6R machining robots,” Robot. Comput. Integr. Manuf., vol. 28, no. 6, pp. 694–699, 2012, doi: https://doi.org/10.1016/j.rcim.2012.04.004.
[25] G. Zhu, W. Guo, Y. Han, and Y. Li, “A comprehensive evaluation framework for kinematic performance of parallel mechanisms based on joint transmissibility and multi-attribute decision making methods,” Mech. Mach. Theory, vol. 181, p. 105217, 2023, doi: https://doi.org/10.1016/j.mechmachtheory.2022.105217.
[26] M. Díaz-Rodríguez, P. Araujo-Gómez, and O. A. González-Estrada, “Performance Index for Dimensional Synthesis of Robots for Specific Tasks,” Robotics, vol. 11, no. 2, 2022, doi: 10.3390/robotics11020051.
[27] J. P. Merlet, “Jacobian, Manipulability, Condition Number, and Accuracy of Parallel Robots,” J. Mech. Des., vol. 128, no. 1, pp. 199–206, 2005, doi: 10.1115/1.2121740.
[28] Z. Zhang, L. Wang, and Z. Shao, “Improving the kinematic performance of a planar 3-RRR parallel manipulator through actuation mode conversion,” Mech. Mach. Theory, vol. 130, pp. 86–108, 2018, doi: https://doi.org/10.1016/j.mechmachtheory.2018.08.011.
[29] M. Husty and C. Gosselin, “On the Singularity Surface of Planar 3-RPR Parallel Mechanisms,” Mech. Based Des. Struct. Mach., vol. 36, no. 4, pp. 411–425, 2008, doi: 10.1080/15397730802411885.
指導教授 伊泰龍(Terence Essomba) 審核日期 2024-1-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明