博碩士論文 111522063 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.188.218.103
姓名 林廷真(Ting-Jhen Lin)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 基於機器學習分析ADHD亞型利用VR認知測驗同步的神經生理數據
(Analysis of ADHD Subtypes Using Machine Learning with Synchronized Neurophysiological Data from VR Based Cognitive Tests)
相關論文
★ 在有干擾的虛擬教室環境下 大人小孩的行為表現與腦神經反應的異同★ 使用映射模型和跨資料集遷移式學習的輕量化居家衰弱症訓練系統
★ 心率生理回饋放鬆訓練對於海洛因使用疾患(HUD)生理資訊之影響分析★ 基於深度學習模型的3D心理旋轉對認知障礙的診斷與評估
★ 評估注意力偵測之穿戴式腦電電極放置有效性★ 建立數位地球:基於Omniverse平台的東南亞衛星雲圖與雷達圖可視化
★ 基於多維度的臺灣天氣類型機器學習 臨近預報與分類系統★ 整合檢索增強生成與大型語言模型應用於精準運動科學平台:架構與實現
★ 透過生理數據分析的VR戰車訓練系統,評估壓力對認知專注力與穩定性的影響及通過多次訓練表現驗證系統有效性★ FrAIlti:利用人工智慧和3D攝影技術提升老年照護的自動化衰弱評估系統
★ 自閉症譜系障礙虛擬實境訓練系統的開發與驗證★ 智慧醫療物聯網平台之裝置管理與應用
★ 智慧醫療物聯網平台之多租戶應用★ XRCURE:基於實證醫學的AIOT、XR和可穿戴感測器在AWS上的數位療法
★ 重複性經顱磁刺激同步虛擬實境與生理監測用於失語症創新治療與評估★ 將網路威脅情報與多視角分析和雙聚類結合:一種多維視覺化方法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-29以後開放)
摘要(中) ADHD亞型是個值得關注的議題,現今的診斷大多主觀又耗時,為了實現精準醫療,根據個體化的數據來提供針對性的治療,本研究採用了在虛擬現實(VR)環境中進行的認知測驗,並同步收集測驗表現與神經生理數據:頭轉, 眼動和腦電,以統計分析和分組分類來探討ADHD亞型之間及亞型與正常組在各方面的差異。從結果得知,即便亞型與正常組間在外在表現上沒有太大的差異但能從腦電看出兩組在大腦活動的不同。而亞型間在單一測驗的頭轉眼動資料幾乎沒有顯著特徵,但在多測驗資料的分類卻能達86%的準確率。在分類上,只分有無ADHD的效果大多沒有比ADHD亞型間的分類或是控制組的比較來得好。另一個發現是,在腦電的頻域特徵分析中,在聽覺CPT的顯著特徵都是發生在點位Oz上,反映出非額葉上的腦電點位對檢測ADHD亞型也是有一定的重要性。在未來,期望這系統能為ADHD亞型提供客觀的數據,除了能成為輔助檢測ADHD亞型的工具之外,也能為未來精準醫療奠定基礎。
摘要(英) ADHD subtypes are a critical area of concern, with current diagnoses often being subjective and time-consuming. To achieve precision medicine and provide targeted treatments based on individualized data, this study utilized cognitive tests in a virtual reality (VR) environment. Tests performance data and neurophysiological data: head rotation, eye movement, and EEG, were synchronously collected and analyzed. Statistical analysis and classification were performed to explore differences between ADHD subtypes and between subtypes and the normal group. Results indicate that, despite minimal external behavioral differences between subtypes and the normal group, EEG data reveal distinct brain activity patterns. While individual tests showed few significant features in head rotation and eye movement, combining multiple tests achieved an 86% classification accuracy. Diagnosing ADHD as a whole was generally less effective than differentiating subtypes or comparing with controls. Additionally, frequency-domain analysis of EEG features from audio CPT highlighted significant findings at the Oz electrode site, underscoring the relevance of non-frontal EEG locations for detecting ADHD subtypes. In the future, this system is expected to provide objective data for ADHD subtypes, serving as a tool for subtype detection and laying the groundwork for precision medicine.
關鍵字(中) ★ 注意力缺陷/過動症(ADHD)
★ 亞型
★ 認知測驗
★ 持續表現測試(CPT)
★ 威斯康辛卡片分類測試(WCST)
★ 腦電圖(EEG)
★ 機器學習(ML)
關鍵字(英) ★ Attention Deficit/Hyperactivity Disorder (ADHD)
★ subtypes
★ Cognitive tests
★ Continuous Performance Test (CPT)
★ Wisconsin Card Sorting Test (WCST)
★ Electroencephalography (EEG)
★ Machine Learning (ML)
論文目次 摘要 i
Abstract ii
致謝 iii
Table of Contents iv
List of Figures vi
List of Tables vii
I. Introduction 1
II. Related Works 5
III. Methodology 11
IV. Results & Discussion 21
V. Conclusion 46
Reference 49
Appendix A 52
Appendix B 53
Appendix C 54
Appendix D 55
Appendix E 56
Appendix F 57
Appendix G 58
Appendix H 59
Appendix I 60
Appendix J 61
Appendix K 62
Appendix L 63
Appendix M 64
Appendix N 65
Appendix O 66
Appendix P 67
參考文獻 [1] S. R. Pliszka, “Patterns of psychiatric comorbidity with attention deficit/hyperactivity disorder,” Child Adolescent Psychiatric Clinics 502 North Amer., vol. 9, pp. 525–540, Jul. 2000.
[2] J. Biederman and S. V. Faraone, “Attention-deficit hyperactivity disorder,” CNS Drugs, vol. 20, no. 2, pp. 107–123, 2005.
[3] J. Johnson, S. Morris, and S. George, “Misdiagnosis and missed diagnosis of adult attention-deficit hyperactivity disorder,” BJPsych Advances, vol. 27, no. 1, pp. 60–61, 2021.
[4] American Psychiatric Association, Diagnostic and statistical manual of mental disorders, 5th ed., 2022.
[5] M. Gaub and C. L. Carlson, “Behavioral characteristics of dsm-iv adhd subtypes in a school-based population,” J Abnorm Child Psychol, vol. 25, no. 2, pp. 103–111, Apr. 1997.
[6] I. C. Lin, S. C. Chang, Y. J. Huang, T. B. J. Kuo, and H. W. Chiu, “Distinguishing different types of attention deficit hyperactivity disorder in children using artificial neural network with clinical intelligent test,” Front Psychol, vol. 13, p. 1067771, Jan. 2023.
[7] J. A. Alda and E. Serrano-Troncoso, “Attention-deficit hyperactivity disorder: agreement between clinical impression and the snap-iv screening tool,” Actas Esp Psiquiatr, vol. 41, no. 2, pp. 76–83, Mar. 2013.
[8] C. S. and V. K., “An approach to measure and improve the cognitive capability of adhd affected children through eeg signals,” in 2018 IEEE 18th International Conference on Advanced Learning Technologies (ICALT), Mumbai, India, 2018, pp. 314–318.
[9] F. Mowlem, J. Agnew-Blais, E. Taylor, and P. Asherson, “Do different factors influence whether girls versus boys meet adhd diagnostic criteria? sex differences among children with high adhd symptoms,” Psychiatry Research, vol. 272, pp. 765–773, 2019.
[10] L. J. Wang, S. Y. Lee, C. S. Tsai, M. J. Lee, M. C. Chou, H. C. Kuo, and W. J. Chou, “Validity of visual and auditory attention tests for detecting adhd,” J Atten Disord, vol. 25, no. 8, pp. 1160–1169, Jun. 2021.
[11] D. Ferreira and N. Dias, “Identification of performance-related eeg phenotypes for neurofeedback training,” in 2012 IEEE 2nd Portuguese Meeting in Bioengineering (ENBENG), Coimbra, Portugal, 2012, pp. 1–7.
[12] S. Rodrak and Y. Wongsawat, “Eeg brain mapping and brain connectivity index for subtypes classification of attention deficit hyperactivity disorder children during the eye-opened period,” in 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 2013, pp. 7400–7403.
[13] M. Ahmadi, K. Kazemi, K. Kuc, A. Cybulska-Klosowicz, M. Zakrzewska, E. Racicka-Pawlukiewicz, M. S. Helfroush, and A. Aarabi, “Cortical source analysis of resting state eeg data in children with attention deficit hyperactivity disorder,” Clin Neurophysiol, vol. 131, no. 9, pp. 2115–2130, Sep. 2020.
[14] S. S and M. B. Anandaraju, “Machine learning approach to predict adhd types using eeg signal data,” in 2023 International Conference on Recent Advances in Science and Engineering Technology (ICRASET), B G NAGARA, India, 2023, pp. 1–4.
[15] Y. Tan et al., “Virtual classroom: An adhd assessment and diagnosis system based on virtual reality,” in 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS), Taipei, Taiwan, 2019, pp. 203–208.
[16] W. Huang et al., “A graph-based information fusion approach for adhd subtype classification,” in 2022 IEEE Smartworld, Ubiquitous Intelligence & Computing, Scalable Computing & Communications, Digital Twin, Privacy Computing, Metaverse, Autonomous & Trusted Vehicles (SmartWorld/UIC/ScalCom/DigitalTwin/PriComp/Meta), Haikou, China, 2022, pp. 714–723.
[17] R. Moqadam, N. Loghmani, A. K. Moghaddam, and A. Allahverdy, “Differentiating brain connectivity networks in adhd and normal children using eeg,” in 2022 30th International Conference on Electrical Engineering (ICEE), Tehran, Iran, Islamic Republic of, 2022, pp. 231-235.
[18] J. Salavert, J. A. Ramos-Quiroga, A. Moreno-Alc´ azar, X. Caseras, G. Palomar, J. Radua, R. Bosch, R. Salvador, P. J. McKenna, M. Casas, and E. Pomarol-Clotet, “Functional imaging changes in the medial prefrontal cortex in adult adhd,” J Atten Disord, vol. 22, no. 7, pp. 679–693, May 2018.
[19] P. Molavi, M. Nadermohammadi, H. Salvat Ghojehbeiglou, C. M. Vicario, M. A. Nitsche, and M. A. Salehinejad, “Adhd subtype-specific cognitive correlates and association with self-esteem: a quantitative difference,” BMC Psychiatry, vol. 20, no. 1, p. 502, Oct. 2020.
[20] M. Altinkaynak et al., “Investigating prefrontal hemodynamic responses in adhd subtypes: A fnirs study,” in 2017 10th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 2017, pp. 611–614.
[21] J. Gonz´alez-Hern´andez, C. Pita-Alcorta, I. Cede˜ no, J. Bosch-Bayard, L. Gal´an-Garcia, W. Scherbaum, and P. Figueredo-Rodriguez, “Wisconsin card sorting test synchronizes the prefrontal, temporal and posterior association cortex in different frequency ranges and extensions,” Hum Brain Mapp, vol. 17, no. 1, pp. 37–47, Sep. 2002.
[22] E. Nyhus and F. Barcel´ o, “The wisconsin card sorting test and the cognitive assessment of prefrontal executive functions: a critical update,” Brain Cogn, vol. 71, no. 3, pp. 437–451, Dec. 2009.
[23] M. Chiang and S. S. F. Gau, “Validation of attention deficit–hyperactivity disorder subtypes among taiwanese children using neuropsychological functioning,” Australian & New Zealand Journal of Psychiatry, vol. 42, no. 6, pp. 526–535, 2008.
[24] J. Egeland, S. Johansen, and T. Ueland, “Differentiating between adhd sub-types on ccpt measures of sustained attention and vigilance,” Scand J Psychol, vol. 50, no. 1, pp. 39–47, Feb. 2009.
[25] D. Pineda, A. Ardila, M. Rosselli, C. Cadavid, S. Mancheno, and S. Mejia, “Executive dysfunctions in children with attention deficit hyperactivity disorder,” International Journal of Neuroscience, vol. 96, no. 3-4, pp. 177–196, 1998.
[26] M. Schmitz, L. Cadore, M. Paczko, L. Kipper, M. Chaves, L. A. Rohde, and M. Knijnik, “Neuropsychological performance in dsm-iv adhd subtypes: An exploratory study with untreated adolescents,” The Canadian Journal of Psychiatry, vol. 47, no. 9, pp. 863–869, 2002.
[27] H. Heinrich, K. Busch, P. Studer, K. Erbe, G. Moll, and O. Kratz, “Eeg spectral analysis of attention in adhd: implications for neurofeedback training?” Front Hum Neurosci, vol. 8, p. 611, Aug. 2014.
[28] R. Barry, A. Clarke, R. McCarthy, M. Selikowitz, C. Brown, and P. Heaven, “Event-related potentials in adults with attention deficit/hyperactivity disorder: an investigation using an inter-modal auditory/visual oddball task,” Int J Psychophysiol, vol. 71, no. 2, pp. 124–131, Feb. 2009.
[29] E. Jodo and Y. Kayama, “Relation of a negative erp component to response inhibition in a go/no-go task,” Electroencephalography and Clinical Neurophysiology, vol. 82, no. 6, pp. 477–482, Jun 1992, erratum in: Electroencephalogr Clin Neurophysiol 1992 Oct;83(4):270.
[30] J. Slater, R. Joober, B. Koborsy, S. Mitchell, E. Sahlas, and C. Palmer, “Can electroencephalography (eeg) identify adhd subtypes? a systematic review,” Neurosci Biobehav Rev, vol. 139, p. 104752, Aug. 2022.
[31] G. R. Pedrollo, A. R. Franco, L. B. Bagesteiro, and A. Balbinot, “Spiking neural networks diagnosis of adhd subtypes through eeg signals evaluation,” in 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2022, pp. 3166-3169.
[32] C.-C. Chen, E. H.-K. Wu, Y.-Q. Chen, H.-J. Tsai, C.-R. Chung, and S.C. Yeh, “Neuronal correlates of task irrelevant distractions enhance the detection of attention deficit/hyperactivity disorder,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 31, pp. 13021310, 2023
指導教授 葉士青 吳曉光(Shih-Ching Yeh Hsiao-Kuang Wu) 審核日期 2024-8-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明