參考文獻 |
[1] “Microsoft hololens: Mixed reality technology for business.” https://www.microsoft.com/en-us/hololens. Accessed: 2024-03-21.
[2] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on knowledge and data engineering, vol. 22, no. 10, pp. 1345–1359, 2009.
[3] K. Židek, P. Lazorík, J. Pitel’, and A. Hošovskỳ, “An automated training of deep learning networks by 3d virtual models for object recognition,” Symmetry, vol. 11, no. 4, p. 496, 2019.
[4] J. Cohen, C. F. Crispim-Junior, C. Grange-Faivre, and L. Tougne, “Cad-based learning for egocentric object detection in industrial context,” in 15th International Conference on Computer Vision Theory and Applications, vol. 5, pp. 644–651, SCITEPRESS-Science and Technology Publications; SCITEPRESS-Science and …, 2020.
[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchicalimage database, ” in 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255, Ieee, 2009.
[6] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv preprint arXiv:1804.02767, 2018.
[7] H. Tavakoli, S. Walunj, P. Pahlevannejad, C. Plociennik, and M. Ruskowski, “Small object detection for near real-time egocentric perception in a manual assembly scenario,” arXiv preprint arXiv:2106.06403, 2021.
[8] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal speed and accuracy of object detection,” arXiv preprint arXiv:2004.10934, 2020.
[9] P. Ruediger-Flore, M. Glatt, M. Hussong, and J. C. Aurich, “Cad-based data augmentation and transfer learning empowers part classification in manufacturing,” The International Journal of Advanced Manufacturing Technology, vol. 125, no. 11, pp. 5605–5618, 2023.
[10] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
[11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.
[12] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural networks,” in International conference on machine learning, pp. 6105–6114, PMLR, 2019.
[13] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1251–1258, 2017.
[14] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutionalnetworks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4700–4708, 2017.
[15] X. Zhu, T. Bilal, P. Mårtensson, L. Hanson, M. Björkman, and A. Maki, “Towards sim-to-real industrial parts classification with synthetic dataset,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4453–4462, 2023.
[16] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, “A convnet for the 2020s,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 11976–11986, 2022.
[17] Q. Diao, Y. Jiang, B. Wen, J. Sun, and Z. Yuan, “Metaformer: A unified meta framework for finegrained recognition,” arXiv preprint arXiv:2203.02751, 2022.
[18] P.-Y. Chou, C.-H. Lin, and W.-C. Kao, “A novel plug-in module for fine-grained visual classification,” arXiv preprint arXiv:2202.03822, 202 ㄉ.
[19] P.-Y. Chou, Y.-Y. Kao, and C.-H. Lin, “Fine-grained visual classification with high-temperature refinement and background suppression,” arXiv preprint arXiv:2303.06442, 2023.
[20] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature pyramid networks for object detection,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2117–2125, 2017.
[21] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” arXiv preprint arXiv:1503.02531, 2015.
[22] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer: Hierarchical vision transformer using shifted windows,” in Proceedings of the IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.
[23] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The caltech-ucsd birds-200-2011 dataset,” California Institute of Technology, 2011.
[24] G. Van Horn, S. Branson, R. Farrell, S. Haber, J. Barry, P. Ipeirotis, P. Perona, and S. Belongie, “Building a bird recognition app and large scale dataset with citizen scientists: The fine print in fine-grained dataset collection,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 595–604, 2015.
[25] A. Buslaev, V. I. Iglovikov, E. Khvedchenya, A. Parinov, M. Druzhinin, and A. A. Kalinin, “Albumentations: fast and flexible image augmentations,” Information, vol. 11, no. 2, p. 125, 2020. |