博碩士論文 112322065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.144.48.204
姓名 陳資璇(Tzu-Hsuan Chen)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 硫鋁酸鈣水泥複合膠結材料之工程性質及抗硫酸鹽能力研究
(Research on the engineering properties and sulfate resistance of calcium sulfoaluminate cement composite cementing materials)
相關論文
★ 台61線快速道路養護經費與平坦度分析-以2007-2019為例★ 應用於高放處置設施之低鹼性混凝土性質及其對緩衝材料影響之研析
★ 溫度對預拌型超早強混凝土性質之影響及相應策略★ 紙漿污泥焚化爐飛灰資源化應用作為CLSM細粒料之可行性研究
★ 燃煤飛灰與底灰應用於陶瓷建材之初步研究★ 細粒料含電弧爐碴之檢測方法及對混凝土性質影響研究
★ 以加速環境探討含電弧爐碴砂漿之膨脹行為 及工程性質影響★ 砂膠比與纖維種類對3D列印混凝土的工程性質影響研究
★ 硫鋁酸鈣水泥複合膠結材之配比與工程性質之研究★ 營建剩餘土石方收容處理場所評鑑制度之研究-以桃園市為例
★ 溫度對複合添加凝結型及硬化型加速劑的預拌高早強水泥漿體及砂漿之工程性質影響研究★ 永續材料及纖維應用於3D列印混凝土之工程性質探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-6-30以後開放)
摘要(中) 硫鋁酸鈣水泥(CSA)為一種以硫鋁酸鈣(又稱葉綠石,簡寫為C4A3S̅)、矽酸二鈣(又稱貝萊土,簡寫為C2S)及鐵鋁酸四鈣(C4AF)為主要成分組成之特殊水泥,具有早期強度發展快速、凝結時間短、流動性佳及乾縮量小等性質。因材料成本昂貴,故有研究提出將CSA與卜特蘭I型水泥(OPC)複合使用,仍具備早期強度高、凝結快等特徵,以提高經濟性。
本研究分為「OPC-CSA系統之初步工程性質探討」、「OPC-CSA系統水泥砂漿之體積穩定性與抗硫酸鹽能力研究」及「OPC-CSA系統工程性質提升策略探討」三階段。第一階段探討OPC-CSA系統之OPC/CSA佔比(1/9、2/8、3/7、5/5、7/3、8/2及9/1)對工作性質與力學性質之影響;第二階段探討OPC-CSA系統之OPC/CSA佔比(與第一階段配比相同)對體積穩定性及抗硫酸鹽能力的影響,同時進行抗硫能力短期試驗,快速分析配比劣化現象;第三階段將具潛力之OPC-CSA系統(依據前兩階段試驗成果提出),使用不同改良策略(添加矽灰、降低水膠比及高溫養護)進行工程性質改善,最終提出OPC-CSA系統的適當配比設計,並建立非破壞檢測法(反彈錘、超音波及成熟度法)與強度發展之關係。
結果顯示,OPC-CSA系統在強度方面,OPC佔比20 % ~ 50 % 時水化發展最快速,1.5小時強度可達12 MPa以上,28天強度接近60 MPa,強度發展的表現為特早強(Very Rapid Hardening, VRH)之強度表現。其中C30(OPC占比30 %)強度發展最佳,1.5小時強度可達16 MPa,28天強度達62.9 MPa;新拌性質方面,當OPC佔比20 % ~ 50 % 時,終凝時間在10分鐘內,流度低於40 %,不符合ASTM C1600規範要求,其中C30之新拌性質最差,終凝時間僅5分鐘,砂漿流度為0 %;乾燥收縮方面,OPC佔比低於50 % 時CSA可抑制OPC收縮,整體乾縮量可維持至0.02 % 以下,其中C30之收縮量最低,僅0.015 %;OPC佔比高於50 % 時整體乾縮量隨OPC佔比有明顯變化,28天乾縮量達0.047 % ~ 0.064 %,其中C70收縮量最顯著,可達0.064 %;抗硫酸鹽能力方面,OPC佔比10 % ~ 30 % 時具備良好之抗硫酸鹽能力,經168天硫酸鹽溶液浸泡,膨脹量可維持在0.030 % 以下,且無發生明顯外觀變化,其中以C30之抗硫酸鹽能力最佳,膨脹量僅0.025 %,OPC佔比為50 % ~ 90 % 時具高膨脹性特徵,經168天硫酸鹽溶液浸泡,膨脹量達0.049 % ~ 0.101 %,其中以C50之抗硫酸鹽能力最差,膨脹量為0.101 %。
根據前兩階段結果挑選C30(強度高且耐久性佳)、C50、C70(強度高但耐久性差)及C80(強度低但耐久性問題輕微)進行矽灰(SF)取代OPC、降低水膠比及高溫養護改良策略研究。使用SF取代OPC進行耐久性改良,SF取代OPC體積佔比30 % 時的改良效果最佳,C50SF30、C70SF30及C80SF30於改良後其長度皆縮短初始長度之0.01 % ~ 0.03 %,但新拌性質方面因SF使流動性及坍度損失加速,拌合後30分鐘之流動性皆為0 %。力學性質提升方面,依據強度提升成效排序,同時降低水膠比與高溫養護表現最佳,早期強度及晚期強度可分別提升58 % ~ 215 %及21 % ~ 37 %。其次為僅改變水膠比,高溫養護成效最差。配比改良後,C50SF30,水膠比為0.35且經常溫養護或經6小時40℃高溫養護皆能符合超早強水泥工程應用性配比,C50SF30,水膠比為0.35且經常溫養護之1.5小時抗壓強度達21.8 MPa,28天達73.9 MPa;C50SF30,水膠比為0.35且經6小時40℃高溫養護之1.5小時之抗壓強度達28.4 MPa,28天達75.2 MPa,且經抗硫能力短期試驗,長度變化量皆無發生膨脹且外觀無明顯變化,評級為良好。非破壞檢測以成熟度法、超音波波速法、反彈錘法評估水泥砂漿之抗壓強度關係性,R2值皆大於0.7,顯示出非破壞檢測法具良好可行性。
相比於常見抗硫酸鹽能力試驗ASTM C1012因試驗期長達一年,本研究提出抗硫能力短期試驗,透過評估長度變化量和外觀形貌,僅56天即可獲得與ASTM C1012半年試驗之相似結果,依據長度變化量與外觀形貌將耐久性評級定義為「良好」、「差」及「極差」,當耐久性評級為「差」與「極差」,表示配比之抗硫酸鹽能力差,該檢測適用於OPC佔比50 % ~ 90 % 之OPC-CSA系統。
摘要(英) Calcium sulfoaluminate cement (CSA) is a special type of cement mainly composed of calcium sulfoaluminate (also known as ye′elimite, abbreviated as C4A3S̅), dicalcium silicate (also known as belite, abbreviated as C2S), and tetracalcium aluminoferrite (C4AF). It is characterized by rapid early strength development, short setting time, good fluidity, and low drying shrinkage. Due to the high cost of the materials, research has proposed using CSA in combination with Portland I type cement (OPC) to maintain features such as high early strength and fast setting while improving economic feasibility.
This research is divided into three stages: "Preliminary Study of the Engineering Properties of the OPC-CSA System," "Study on the Volume Stability and Sulfate Resistance of OPC-CSA System Cement Mortar," and "Investigation of Strategies to Improve the Engineering Properties of the OPC-CSA System." The first stage examines the effect of OPC/CSA ratios (1/9, 2/8, 3/7, 5/5, 7/3, 8/2, and 9/1) on workability and mechanical properties. The second stage investigates the impact of OPC/CSA ratios (same as the first stage) on volume stability and sulfate resistance, including short-term sulfate resistance tests for rapid analysis of deterioration phenomena. The third stage uses promising OPC-CSA systems (based on results from the first two stages) and applies different improvement strategies (adding silica fume, reducing water-to-cement ratio, and high-temperature curing) to enhance engineering properties, ultimately proposing an appropriate mix design for the OPC-CSA system and establishing the relationship between non-destructive testing methods (rebound hammer, ultrasonic, and maturity methods) and strength development.
The results indicate that the OPC-CSA system exhibits the fastest hydration development with an OPC ratio of 20% to 50%, achieving a strength of over 12 MPa in 1.5 hours and nearly 60 MPa in 28 days, demonstrating Very Rapid Hardening (VRH) performance. Among these, C30 (30% OPC) shows the best strength development, reaching 16 MPa in 1.5 hours and 62.9 MPa in 28 days. In terms of fresh properties, when the OPC ratio is 20% to 50%, the final setting time is within 10 minutes, and the flow is below 40%, not meeting ASTM C1600 specifications. Among these, C30 has the worst fresh properties, with a final setting time of only 5 minutes and mortar flow of 0%. For drying shrinkage, when the OPC ratio is below 50%, CSA can inhibit OPC shrinkage, maintaining the overall drying shrinkage below 0.02%, with C30 showing the lowest shrinkage of only 0.015%. When the OPC ratio is above 50%, the overall drying shrinkage significantly changes with the OPC ratio, reaching 0.047% to 0.064% in 28 days, with C70 showing the most significant shrinkage at 0.060%. Regarding sulfate resistance, when the OPC ratio is 10% to 30%, the system shows good sulfate resistance, with expansion maintained below 0.030% after 168 days of immersion in sulfate solution, and no significant appearance changes. Among these, C30 has the best sulfate resistance, with an expansion of only 0.025%. When the OPC ratio is 50% to 90%, the system exhibits high expansion characteristics, with expansion reaching 0.049% to 0.101% after 168 days of immersion, with C50 showing the worst sulfate resistance at 0.101%.
Based on the results of the first two stages, C30 (high strength and good durability), C50, C70 (high strength but poor durability), and C80 (low strength but minor durability issues) were selected for improvement strategy research using silica fume (SF) to replace OPC, reducing the water-to-cement ratio, and high-temperature curing. Using SF to replace OPC for durability improvement, the best effect is achieved when SF replaces 30% of the OPC volume. After improvement, C50SF30, C70SF30, and C80SF30 all show a length reduction of 0.01% to 0.03% of the initial length, but the fresh properties deteriorate due to accelerated fluidity and slump loss caused by SF, with zero fluidity 30 minutes after mixing. In terms of enhancing mechanical properties, the combination of reducing the water-to-cement ratio and high-temperature curing showed the best performance, improving early and late strength by 58% to 215% and 21% to 37%, respectively. Next was only changing the water-to-cement ratio, with high-temperature curing being the least effective. After mix improvement, C50SF30 with a water-to-cement ratio of 0.35 and cured at room temperature or for 6 hours at 40℃ meets the ultra-rapid hardening cement engineering application requirements. C50SF30 with a water-to-cement ratio of 0.35 and cured at room temperature reaches a compressive strength of 21.8 MPa in 1.5 hours and 73.9 MPa in 28 days. C50SF30 with a water-to-cement ratio of 0.35 and cured for 6 hours at 40℃ reaches a compressive strength of 28.4 MPa in 1.5 hours and 75.2 MPa in 28 days, showing no expansion and no significant appearance changes in short-term sulfate resistance tests, rated as good. Non-destructive testing using the maturity method, ultrasonic pulse velocity method, and rebound hammer method to evaluate the compressive strength of cement mortar shows R2 values greater than 0.7, indicating good feasibility of non-destructive testing methods.
Compared to the common sulfate resistance test ASTM C1012, which has a test period of up to one year, this study proposes a short-term sulfate resistance test. By evaluating length changes and appearance morphology, similar results to the ASTM C1012 six-month test can be obtained in just 56 days. Based on length changes and appearance morphology, durability ratings are defined as "good," "poor," and "very poor." When the durability rating is "poor" or "very poor," it indicates poor sulfate resistance of the mix, and this test is suitable for OPC-CSA systems with OPC ratios of 50% to 90%.
關鍵字(中) ★ 硫鋁酸鈣水泥
★ 超早強
★ 水泥複合膠結材
★ 鈣礬石
★ 硫酸鹽侵蝕
關鍵字(英)
論文目次 摘要 i
Abstract iii
致謝 vii
目錄 ix
圖目錄 xiii
表目錄 xix
一、 緒論 1
1.1研究背景與動機 1
1.2研究目的 2
1.3研究內容 3
二、 文獻回顧 7
2.1水泥水化機理 7
2.1.1硫鋁酸鈣水泥水化機理 7
2.1.2卜特蘭水泥水化機理 8
2.1.3 OPC-CSA二元膠結材系統 8
2.2影響OPC-CSA-CS三元系統強度發展因素 10
2.2.1石膏種類 10
2.2.2石膏含量 12
2.2.3OPC-CSA比例 15
2.3物理化學性質影響 17
2.3.1水泥凝結時間 17
2.3.2體積穩定性 19
2.3.3水化熱 22
2.4硫酸鹽侵蝕 25
2.4.1外部硫酸鹽侵蝕 25
2.4.2加速硫酸鹽侵蝕試驗 27
2.4.3預防外部硫酸鹽侵蝕的措施 30
2.4.4礦物摻料 30
三、研究規劃 33
3.1研究流程 33
3.1.1第一部分(子流程A) 34
3.1.2第二部分(子流程B) 34
3.1.3第三部分(子流程C) 35
3.2試驗材料與配比編號 40
3.2.1試驗材料 40
3.2.2試驗配比與編號 49
3.3試驗方法 54
3.3.1拌和程序 54
3.3.2漿體試驗 55
3.3.3砂漿試驗 56
3.3.4硫酸鹽侵蝕加速環境 60
3.3.5非破壞試驗 62
3.3.6微觀分析 64
四、研究成果與分析 67
4.1 OPC-CSA系統之初步工程性質探討 67
4.1.1凝結時間 69
4.1.2砂漿流度 71
4.1.3抗壓強度 73
4.1.4水化24小時內升溫放熱曲線 77
4.1.5研究小結 80
4.2 OPC-CSA系統水泥砂漿之體積穩定性與抗硫酸鹽能力分析 82
4.2.1乾燥收縮 82
4.2.2硫酸鹽侵蝕 (ASTM C1012) 85
4.2.3硫酸鹽侵蝕抗硫能力短期試驗可行性評估 91
4.2.4研究小結 118
4.3 OPC-CSA系統工程性質提升之相應策略研究 122
4.3.1添加矽灰對OPC-CSA系統之影響 122
4.3.2水膠比和高溫養護對OPC+SF-CSA系統之影響 158
4.4 OPC+SF-CSA系統水泥砂漿與非破壞檢測之關係 197
4.4.1成熟度與抗壓強度之相關性 198
4.4.2超音波與抗壓強度之相關性 201
4.4.3反彈錘與抗壓強度之相關性 203
4.5綜合討論 206
4.5.1短期抗硫酸鹽檢測 206
4.5.2 OPC-CSA複合水泥砂漿綜合成效分析 217
五、結論與建議 221
5.1結論 221
5.2建議 223
參考文獻 225
圖附錄 235
參考文獻 [1] Juenger, M. C. G., Winnefeld, F., Provis, J. L., & Ideker, J. H. (2011), “Advances in alternative cementitious binders”, Cement and concrete research, 41(12), 1232-1243.
[2] Gartner, E. (2004), “Industrially interesting approaches to “low-CO2” cements”, Cement and Concrete research, 34(9), 1489-1498.
[3] Trauchessec, R., Mechling, J. M., Lecomte, A., Roux, A., & Le Rolland, B. (2015), “Hydration of ordinary Portland cement and calcium sulfoaluminate cement blends”, Cement and Concrete Composites, 56, 106-114.
[4] Bizzozero, J., Gosselin, C., & Scrivener, K. L. (2014), “Expansion mechanisms in calcium aluminate and sulfoaluminate systems with calcium sulfate”, Cement and Concrete Research, 56, 190-202.
[5] Li, P., Gao, X., Wang, K., Tam, V. W., & Li, W. (2020), “Hydration mechanism and early frost resistance of calcium sulfoaluminate cement concrete”, Construction and Building Materials, 239, 117862.
[6] Sahu, S., Havlica, J., Tomková, V., & Majling, J. (1991), “Hydration behaviour of sulphoaluminate belite cement in the presence op various calcium sulphates”, Thermochimica Acta, 175(1), 45-52.
[7] 顏聰:《土木材料》,第二版,台北市:高立圖書有限公司,民國 94 年。
[8] Kuzel, H. J. (1996), “Initial hydration reactions and mechanisms of delayed ettringite formation in Portland cements”, Cement and Concrete Composites, 18(3), 195-203.
[9] Pelletier, L., Winnefeld, F., & Lothenbach, B. (2010), “The ternary system Portland cement–calcium sulphoaluminate clinker–anhydrite: hydration mechanism and mortar properties”, Cement and Concrete Composites, 32(7), 497-507.
[10] Le Saoût, G., Lothenbach, B., Hori, A., Higuchi, T., & Winnefeld, F. (2013), “Hydration of Portland cement with additions of calcium sulfoaluminates”, Cement and Concrete Research, 43, 81-94.
[11] Zhang, J., Li, G., Ye, W., Chang, Y., Liu, Q., & Song, Z. (2018), “Effects of ordinary Portland cement on the early properties and hydration of calcium sulfoaluminate cement”, Construction and Building Materials, 186, 1144-1153.
[12] Nelson, S., Geddes, D. A., Kearney, S. A., Cockburn, S., Hayes, M., Angus, M. J., ... & Provis, J. L. (2023), “Hydrate assemblage stability of calcium sulfoaluminate-belite cements with varying sulfate content”, Construction and Building Materials, 383, 131358.
[13] Bertola, F., Gastaldi, D., Irico, S., Paul, G., & Canonico, F. (2022), “Influence of the amount of calcium sulfate on physical/mineralogical properties and carbonation resistance of CSA-based cements”, Cement and Concrete Research, 151, 106634.
[14] Pelletier-Chaignat, L., Winnefeld, F., Lothenbach, B., Le Saout, G., Müller, C. J., & Famy, C. (2011), “Influence of the calcium sulphate source on the hydration mechanism of Portland cement–calcium sulphoaluminate clinker–calcium sulphate binders”, Cement and Concrete Composites, 33(5), 551-561.
[15] García-Maté, M., Angeles, G. D. L. T., León-Reina, L., Losilla, E. R., Aranda, M. A., & Santacruz, I. (2015), “Effect of calcium sulfate source on the hydration of calcium sulfoaluminate eco-cement”, Cement and Concrete Composites, 55, 53-61.
[16] Glasser, F. P., & Zhang, L. (2001), “High-performance cement matrices based on calcium sulfoaluminate–belite compositions”, Cement and Concrete Research, 31(12), 1881-1886.
[17] 張辰鴻,「硫鋁酸鈣水泥複合膠結材之配比與工程性質之研究」,國立中央大學,碩士論文,民國 112 年。
[18] Trauchessec, R., Mechling, J. M., Lecomte, A., Roux, A., & Le Rolland, B. (2014), “Impact of anhydrite proportion in a calcium sulfoaluminate cement and Portland cement blend”, Advances in cement research, 26(6), 325-333.
[19] 萬宇豪、朱金勇、張川、喬有浩、陳禮儀、王勝,(2017),「矽酸鹽-硫鋁酸鹽複合水泥水化協同效應研究」,科學技術與工程,第17卷,第14期。
[20] Wang, J., Tan, Y., Li, H., Xie, Y., & Feng, Z. (2023), “Hydration Mechanism of Portland and Calcium Sulphoaluminate Cementitious Material”, Journal of Advanced Concrete Technology, 21(12), 983-994.
[21] [2] Neenu, S. K. (2021), “Types of Shrinkages in Concrete and its Preventions”, The Constructor, https://theconstructor.org/concrete/types-of-shrinkages-in-concrete-prevention/20384/
[22] Afroughsabet, V., Biolzi, L., Monteiro, P. J., & Gastaldi, M. M. (2021), “Investigation of the mechanical and durability properties of sustainable high performance concrete based on calcium sulfoaluminate cement”, Journal of Building Engineering, 43, 102656.
[23] Sirtoli, D., Wyrzykowski, M., Riva, P., & Lura, P. (2020) , “Autogenous and drying shrinkage of mortars based on Portland and calcium sulfoaluminate cements”, Materials and Structures, 53, 1-14.
[24] Tang, S. W., Zhu, H. G., Li, Z. J., Chen, E., & Shao, H. Y. (2015), “Hydration stage identification and phase transformation of calcium sulfoaluminate cement at early age”, Construction and Building Materials, 75, 11-18.
[25] Bullard, J. W., Jennings, H. M., Livingston, R. A., Nonat, A., Scherer, G. W., Schweitzer, J. S., ... & Thomas, J. J. (2011), “ Mechanisms of cement hydration”, Cement and concrete research, 41(12), 1208-1223.
[26] Ji, G., Ali, H. A., Sun, K., Xuan, D., Peng, X., & Li, J. (2023) , “Volume Deformation and Hydration Behavior of Ordinary Portland Cement/Calcium Sulfoaluminate Cement Blends”, Materials, 16(7), 2652.
[27] Abba, S. I., Ma’aruf, A., & Nuruddeen, M. M. (2017) , “ “Sulfate Attack’’A Theoretical Review Approach I”, International Journal of Advance Technology in Engineering and Science, 3(1), 643-651.
[28] Brunetaud, X., Khelifa, M. R., & Al-Mukhtar, M. (2012), “Size effect of concrete samples on the kinetics of external sulfate attack. Cement and Concrete Composites”, 34(3), 370-376.
[29] Bescher, E., Rice, E. K., Ramseyer, C., & Roswurm, S. (2016), “Sulfate resistance of calcium sulphoaluminate cement”, Journal of Structural Integrity and Maintenance, 1(3), 131-139.
[30] 黃兆龍:《高性能混凝土理論與實務》,初版,台北市:詹氏書局,民國 92 年。
[31] Al-Amoudi, O. S. B. (2002), “Attack on plain and blended cements exposed to aggressive sulfate environments”, Cement and Concrete Composites, 24(3-4), 305-316.
[32] Monteiro, P. J. (2006), “Scaling and saturation laws for the expansion of concrete exposed to sulfate attack”, Proceedings of the National Academy of Sciences, 103(31), 11467-11472.
[33] Ost, B.J. (1997), “World cement research and development”, Journal of PCA Research and Development Laboratories, 8, p. 82.
[34] Ost, B.J.,(1975), “Schiefelbein, B., & Summerfiled”, J.M. US Patent 3, 860,433
[35] Han, T., Wang, X., Li, D., Li, D., Han, N., & Xing, F. (2019), “Damage and degradation mechanism for single intermittent cracked mortar specimens under a combination of chemical solutions and dry-wet cycles”, Construction and Building Materials, 213, 567-581.
[36] He, R., Zheng, S., Gan, V. J., Wang, Z., Fang, J., & Shao, Y. (2020), “Damage mechanism and interfacial transition zone characteristics of concrete under sulfate erosion and Dry-Wet cycles”, Construction and Building Materials, 255, 119340.
[37] Ma, H., Gong, W., Yu, H., & Sun, W. (2018), “Durability of concrete subjected to dry-wet cycles in various types of salt lake brines”, Construction and Building Materials, 193, 286-294.
[38] Nehdi, M. L., Suleiman, A. R., & Soliman, A. M. (2014), “Investigation of concrete exposed to dual sulfate attack”, Cement and Concrete Research, 64, 42-53.
[39] Steiger, M., & Asmussen, S. (2008), “Crystallization of sodium sulfate phases in porous materials: The phase diagram Na2SO4–H2O and the generation of stress”, Geochimica et Cosmochimica Acta, 72(17), 4291-4306.
[40] Winkler, E. M., & Singer, P. C. (1972), “Crystallization pressure of salts in stone and concrete”, Geological society of America bulletin, 83(11), 3509-3514.
[41] Liu, Z., Deng, D., & De Schutter, G. (2014). Does concrete suffer sulfate salt weathering?. Construction and Building Materials, 66, 692-701.
[42] Wang, K., Guo, J., Wu, H., & Yang, L. (2020), “Influence of dry-wet ratio on properties and microstructure of concrete under sulfate attack”, Construction and Building Materials, 263, 120635.
[43] Collepardi, M. (1999), “Damage by delayed ettringite formation”, Concrete International, 21(1), 69-74.
[44] Irassar, E. F., Di Maio, A., & Batic, O. R. (1996), “Sulfate attack on concrete with mineral admixtures”, Cement and Concrete Research, 26(1), 113-123.
[45] Bonakdar, A., & Mobasher, B. (2010), “ Multi-parameter study of external sulfate attack in blended cement materials”, Construction and Building Materials, 24(1), 61-70.
[46] Folliard, K. J., Ohta, M., Rathje, E., & Collins, P. (1994), “Influence of mineral admixtures on expansive cement mortars”, Cement and Concrete Research, 24(3), 424-432.
[47] 丁向群,趙欣悅,徐曉婉,房延鳳,( 2020),「礦物摻合料對硫鋁酸鹽水泥-普通矽酸鹽水泥複合體系性能的影響」,新型材料建築,第三期,40-44頁。
[48] Winnefeld, F., & Barlag, S. (2010), “Calorimetric and thermogravimetric study on the influence of calcium sulfate on the hydration of ye’elimite”, Journal of thermal analysis and calorimetry, 101(3), 949-957.
[49] Huang, G., Pudasainee, D., Gupta, R., & Liu, W. V. (2021), “Extending blending proportions of ordinary Portland cement and calcium sulfoaluminate cement blends: Its effects on setting, workability, and strength development”, Frontiers of Structural and Civil Engineering, 15, 1249-1260.
[50] Ke, G., Zhang, J., & Liu, Y. (2022), “Shrinkage characteristics of calcium sulphoaluminate cement concrete”, Construction and Building Materials, 337, 127627.
[51] Colonna, D., Leone, M., Aiello, M. A., Tortelli, S., & Marchi, M. I. (2019), “Short and long-term behaviour of RC beams made with CSA binder”, Engineering Structures, 197, 109370.
[52] Yu, H., Wu, L. P., Liu, W. V., & Pourrahimian, Y. (2017), “Developing expansive shotcrete mixtures from calcium sulfoaluminate”, Portland cement, and calcium sulfate. In Proceedings of the CIM.
[53] Cao, R., Yang, J., Li, G., Liu, F., Niu, M., & Wang, W. (2022), “Resistance of the composite cementitious system of ordinary Portland/calcium sulfoaluminate cement to sulfuric acid attack”, Construction and Building Materials, 329, 127171.
[54] 邵化建,「乾濕循環對混凝土物理力學性能影響研究」,西北農林科技大學農業水利工程系,碩士論文,民國 110 年。
[55] Clifton, J. R., Frohnsdorff, G. J., & Ferraris, C. C. (1999), “Standards for evaluating the susceptibility of cement-based materials to external sulfate attack”.
[56] Qi, B., Gao, J., Chen, F., & Shen, D. (2017), “ Evaluation of the damage process of recycled aggregate concrete under sulfate attack and wetting-drying cycles”, Construction and Building Materials, 138, 254-262.
[57] Jang, S. Y., Kim, B. S., & Oh, B. H. (2011), “Effect of crack width on chloride diffusion coefficients of concrete by steady-state migration tests”, Cement and Concrete Research, 41(1), 9-19.
[58] Park, S. S., Kwon, S. J., & Jung, S. H. (2012), “Analysis technique for chloride penetration in cracked concrete using equivalent diffusion and permeation”, Construction and Building Materials, 29, 183-192.
[59] Zhutovsky, S., & Douglas Hooton, R. (2017), “Experimental study on physical sulfate salt attack”, Materials and Structures, 50(1), 54.
[60] Scherer, G. W. (2004), “Stress from crystallization of salt”, Cement and concrete research, 34(9), 1613-1624.
[61] Tsui, N., Flatt, R. J., & Scherer, G. W. (2003), “Crystallization damage by sodium sulfate”, Journal of cultural heritage, 4(2), 109-115.
[62] Mehta, P. K. (1986), “ Concrete. Structure, properties and materials”.
[63] Mehta, P. K. (1973), “Mechanism of expansion associated with ettringite formation”, Cement and concrete research, 3(1), 1-6.
[64] Flatt, R. J., & Scherer, G. W. (2008), “Thermodynamics of crystallization stresses in DEF”, Cement and Concrete Research, 38(3), 325-336.
[65] Ping, X., & Beaudoin, J. J. (1992), “Mechanism of sulphate expansion I. Thermodynamic principle of crystallization pressure”, Cement and concrete research, 22(4), 631-640.
[66] Chaunsali, P., & Mondal, P. (2016), “Physico-chemical interaction between mineral admixtures and OPC–calcium sulfoaluminate (CSA) cements and its influence on early-age expansion”, Cement and Concrete Research, 80, 10-20.
[67] Liu, C., Su, X., Wu, Y., Zheng, Z., Yang, B., Luo, Y., ... & Yang, J. (2021), “Effect of nano-silica as cementitious materials-reducing admixtures on the workability, mechanical properties and durability of concrete”, Nanotechnology Reviews, 10(1), 1395-1409.
[68] 丁向群、徐曉婉,(2018),「礦物摻合料對矽酸鹽水泥-硫鋁酸鹽水泥複合體系凝結時間及強度的影響」,瀋陽建築大學學報:自然科學版,第34卷,第3期, 498-504頁。
[69] Khedr, S. A., & Abou-Zeid, M. N. (1994), “Characteristics of silica-fume concrete”, Journal of Materials in Civil Engineering, 6(3), 357-375.
[70] Mostafa, N. Y., & Brown, P. W. (2005), “Heat of hydration of high reactive pozzolans in blended cements: Isothermal conduction calorimetry”, Thermochimica acta, 435(2), 162-167.
[71] Kadri, E. H., & Duval, R. (2009), “Hydration heat kinetics of concrete with silica fume”, Construction and Building Materials, 23(11), 3388-3392.
[72] Khatri, R. P., Sirivivatnanon, V., & Gross, W. (1995), “Effect of different supplementary cementitious materials on mechanical properties of high performance concrete”, Cement and Concrete research, 25(1), 209-220.
[73] Chen, X., & Wu, S. (2013), “Influence of water-to-cement ratio and curing period on pore structure of cement mortar”, Construction and Building Materials, 38, 804-812.
[74] Korouzhdeh, T., Eskandari-Naddaf, H., & Kazemi, R. (2022), “The ITZ microstructure, thickness, porosity and its relation with compressive and flexural strength of cement mortar; influence of cement fineness and water/cement ratio”, Frontiers of Structural and Civil Engineering, 16(2), 191-201.
[75] Lin, F., & Meyer, C. (2009), “Hydration kinetics modeling of Portland cement considering the effects of curing temperature and applied pressure”, Cement and Concrete Research, 39(4), 255-265.
[76] Matsushita, T., Hoshino, S., Maruyama, I., Noguchi, T., & Yamada, K. (2007), “ Effect of curing temperature and water to cement ratio on hydration of cement compounds”, In Proceedings of 12th international congress chemistry of cement, Montreal.
[77] Kjellsen, K. O., & Detwiler, R. J. (1992), “Reaction kinetics of Portland cement mortars hydrated at different temperatures”, Cement and Concrete Research, 22(1), 112-120.
[78] Haach, V. G., Vasconcelos, G., & Lourenço, P. B. (2011), “Influence of aggregates grading and water/cement ratio in workability and hardened properties of mortars”, Construction and Building Materials, 25(6), 2980-2987.
[79] Shi, J., Liu, B., Zhou, F., Shen, S., Guo, A., & Xie, Y. (2021), “Effect of steam curing regimes on temperature and humidity gradient, permeability and microstructure of concrete”, Construction and Building Materials, 281, 122562.
[80] Burg, R. G. (1996), “The influence of casting and curing temperature on the properties of fresh and hardened concrete (No. R&D Bulletin RD113T,)”, Skokie, IL, USA: Portland Cement Association.
[81] Wu, Z., Wong, H. S., & Buenfeld, N. R. (2017), “Transport properties of concrete after drying-wetting regimes to elucidate the effects of moisture content, hysteresis and microcracking”, Cement and concrete research, 98, 136-154.
[82] Goud, S. S., Rajaram, C., & Kumar, R. P. (2016), “Comparative Study on Materials used in Various Codes for Design of RC and Steel Structures”.
指導教授 王韡蒨 審核日期 2024-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明