博碩士論文 80345010 詳細資訊


姓名 宋守正(Shoou-Jeng Song)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 不同光碼用於碼多工光通訊系統之性能分析
(Performance analysis of CDMA optical communication systems with various classes of codes)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來以展頻(spread spectrum)技巧用於光通訊系統其相關設計、分析工作已廣受重視。我們所熟知質數碼(prime code)用於碼多工(code-division multiple-access,CDMA)光通訊系統的精確分析已被深入的探討。許多合適用於CDMA光通訊系統的光碼也陸續的被提出來,尤其最近有些研究結果顯示,經由合理的調整數碼的長度(length)及配重(weight)可以獲得更佳的系統性能。因而引起我們對此一課題的興趣並試圖尋找其他調整質數碼的法則來改善系統性能,使其在相對的系統容量、頻寬、複雜度之下可以得到較低的誤碼率(Bit Error Rate, BER)。
本論文基本上先建立較接近實際CDMA光通訊系統的數學模式,並用二種數學方法:高斯近似法(Gaussian approximation)及鞍點近似法(saddlepoint approximation)來進行相關性能計算、預估。我們將系統視為非同步多工狀態並將雪崩二極體(avalanche photodiode,APD)納入系統設計中以求儘量接近實際可能的光通訊系統。
本論文將參照質數碼彼此之間關連性(correlation)的特質,嘗試去調整減少碼的長度與配重,並發展出二種不同法則來產生二種修訂的質數碼:MP碼(Modified Prime, MP)及MFP碼(Modified Fibonacci Prime,MFP),並設定篩選條件從碼群中選擇較恰當的碼型來供系統使用。同時,我們也針對在同步系統中常被提及的QC碼(Quadratic Congruence, QC)進行探討。因為此種光碼比質數碼具有極大量的不同碼型,若經由前述之篩選方式亦可以挑出較適合於非同步系統使用之碼型。本文中將以質數碼為參考基準來比較上述三種碼型在系統性能方面的表現。
經由有步驟的推導,我們除可以計算誤碼率之外也可預估系統設計上重要的參數,例如在特定誤碼率的需求下,我們可推算出信號強度、最佳APD增益、最佳臨界值等參數,同時經由這些性能的比較使我們瞭解所提出修改的質數碼型,將可以達到預期改善系統性能的目的,而QC碼也可經由篩選後用之於非同步光通訊系統。基於本文的探討我們提出了幾種合適的光碼供碼多工光通訊系統使用,而且描述建立了一個實體分析方法,可以做為光通訊系統有效的系統設計工具。
摘要(英) Optical multiple-access systems using code-division multiple-access technique is investigated. The overall system performance is calculated for prime codes, QC codes, modified prime codes and modified Fibonacci prime codes. Theoretical analysis of the output current distribution of optical receivers with avalanche photodiode (APD) is developed. The mean and variance of the output statistics are presented. The bit error rate (BER) can be estimated by using the Gaussian approximation and saddlepoint approximation. The effects of the multiple-user interference, shot noise, and receiver thermal noise are investigated. From the numerical results we find that when the multiple-user interference increases, the saddlepoint approximation yields satisfactory results, but the Gaussian approximation yields higher BER floors.
In this research we present two classes of modified prime codes with less weights and shorter lengths to improve the system performance. We also show the coding algorithm and the method for choosing the suitable optical codes for unsynchronous communication systems. We will show shown how to find the value of system parameters, such as the required signal strength, the APD gain and the decision level. Based on this research we present a realistically analytical method as an effective tool for the design of optical communication systems.
關鍵字(中) ★ 雪崩二極體
★ 鞍點近似法
★ 質數碼
★ 碼多工光通訊
★ 展頻
關鍵字(英) ★ prime code
★ CDMA
★ spread spectrum
★ saddlepoint approximation
★ APD
論文目次 Cover
論文提要
ABSTRACT
Contents
Chapter 1 Introduction
1.1 Motivation
1.2 Fundamental concepts
1.3 Dissertation organization
Chapter 2 Code Design
2.1 Introduction
2.2 Prime codes
2.3 Qc codes
2.4 Modified prime codes
2.5 Modified Fibonacci prime codes
2.6 Comparison and choosing code sequence
Chapter 3 System Model
3.1 Introductino
3.2 The transmitter model
3.3 Statistic property of APD
3.4 The receiver model
Chapter 4 System Performance Analysis
4.1 Introduction
4.2 Computing the receiver output distribution
4.3 The Gaussian approximation
4.4 The saddlepoint approximation
4.5 Optimum APD gain
4.6 Optimum decisin level
4.7 The bit ceeor floor
4.8 Required signal strength
Chapter 5 Numerical Results
5.1 Introduction
5.2 Estimation of bit error rate
5.3 Comparison of bit error rate
5.4 Comparison of threshold
5.5 Fiding optimum APD gain
5.6 Estimation of required signal strength
Chapter 6 Conclusions
References
參考文獻 [1] A.A. Shaar and P.A. Davies, “Prime sequences: guasi-optimal sequences for OR channel division multiplexing, ”Election Lett., vol. 19, no. 21, Oct. 1983.
[2] J.A. Salehi, “Code division multiple-user techniques in optical fiber networks-Part I: Fundamental principles, ”IEEE Trans. Commun., vol 37, pp. 834-842, Aug.1989.
[3] Z. Kostic’ and E.L. Titlebaum, “The design and performance analysis for several new classes of codes for optical synchronous CDMA and arbitrary-medium time-hopping synchronous CDMA communication systems, ”IEEE Trans. Commun., vol 42, no. 8, pp. 2608-2617, 1994.
[4] E. Jugl, T. Kuhwald and K. Iversen, “Algorithm for construction of (0,1)-matrix codes,”Electron. Lett., vol. 33, no. 3, pp. 227-229, Jan. 1997.
[5] Pual R, Prucnal, Mario A, Santoro and Ting Rui Fan, “Spread spectrum fiber-optic local area network using optical processing,”IEEE J Lightw. Technol., vol. 4, no. 5, pp. 547-554, May.1986.
[6] C.L. Ho and C.Y. Wu, “Performance analysis of CDMA optical communication systems with avalanche photodiodes, “IEEE J Lightw. Technol., vol. 12, no. 6, pp. 1062-1072, Jun. 1994.
[7] A.W. Lam and A.M. Hhussain, “Performance analysis of direct-detection optical CDMA communication system with avalanche photodiodes,” IEEE Trans. Commum., vol 40, no 4, pp. 810-820, Apr.1992.
[8] C.W. Helstrom, “Computing the performance of optical receivers with avalanche diode detectors,”IEEE Trans. Commun., vol. 36, pp. 66-66, 1988.
[9] C.W. Helstrom and C.L. Ho, “Analysis of avalanche diode receivers by saddlepoint integration, ”IEEE Trans. Commun.,vol. 40, no. 8, pp. 1327-1338, Aug. 1992.
[10] W.C. Kwong, G.C. Yang and J.G. Zhang, “2n Prime-swquence codes and codeing architecture for optical code-division multiple-access, “IEEE Trans on Commun., vol.44, no.9 pp.1152-1162, Sep. 1996.
[11] W.C. Kwong, J.G. Zhang and G.C. Yang, “2n Prime-sequence codes and its optical CDMA coding architecture, ”Electron. Leet., vol. 30, no. 6, pp. 509-510, Mar. 1994.
[12] W. Kwong, P.Perrier and P. Pruenal, “Performance comparison of asynchronous and synchronous code-division multiple access techniques for fiber-optic local area network, “IEEE Trans. Commun., vol.39, no.11, pp.1625-1634, Nov.1991.
[13] J.G. Zhang and W.C. Kwong , “Effective design of optical code-division multiple access networks by using the modified prime code, ”Electron Left., vol. 33, no. 3, pp. 229-230, Jan. 1997.
[14] G.C Yang, “Variable-weight optical orthogonal codes for CDMA networks with multiple performance requirements, ”IEEE Trans. commun., vol. 44, no. 1,Jan. 1996.
[15] F.R.K. Chung ,J.A. Salehi and V.K. Wei, “Optical orthogonal codes: design, analysis, and applications, “IEEE Trans. Inform. Theory, vol. 35, pp. 595-604, May. 1989.
[16] J.A. Salehi and C.A. Brackett, “Code division multiple access techniques analysis, “IEEE Trans. Inform., vol. 37, pp. 834-850, Aug. 1989.
[17] H.Chung and P.V. kumar, “optical orthogonal codes-new bounds and an optical construction, ”IEEE Trans. Inform. Theory, vol. 36, pp. 866-873, July. 1990.
[18] G.C. Yang and T. Fuja, “Optical orthogonal codes with unequal auto and cross-correlation constraints, ” IEEEE Trans. Inform. Theory, vol.41, pp. P6-106, Jan.1995.
[19] F.R.K. Chang, J.A. Salehi and V.K. Wei, “Correction to optical orthogonal codes: design, analysis and applications,” IEEE Trans. Inform. Theory, vol. 38, pp. 1429, July. 1992.
[1] M.B. Pursley and D.V.sarwate, “Performance evaluation for phase-codes spread-spectrum multiple-access communication-part Ⅱ: code sequence analysis,” IEEE Trans. Commun., vol. 25, no. 8, Aug. 1977.
[21] E.L.Titlebaum, “Time frequency hop signals─part Ⅰ: coding based upon the theory of linear congruences, “IEEE Trans. Aerospace Electron. Syst., pp. 490-494,July. 1981.
[22] M.R.Schroeder, Number Theory in Science and Communication, Berlin, Germany: Springer verlag, 1986
[23] E.L. Titlebaum and L.H. Sibul, “Time frequency hop signals-part 2:coding based upon quadratic congruences, ”IEEE Trans. Aerospace Electron.Syst., pp. 494-501,July. 1981.
[24] P.V. Kumar, “On the existence of square dot-matrix patterns having a specific three-valued periodic correlation function, “IEEE Trans. Inform. Theory, vol. 34, pp. 271-278, Mar. 1998.
[25] C.L. Ho and S.J. Song, “performance analysis of optical CDMA communication system with quadratic congruential codes, “J. Opt. Commun., vol. 20, no. 2, pp. 59-63, April. 1999.
[26] C.L. Ho and S.J. Song, “Modified prime codes for CDMA optical communication systems, “J. Opt. Commun., vol. 20, no. 4, pp. 150-152, Aug. 1999.
[27] B. Sklar, Digital Communications Fundamentals and Applications, p.546, New Jersey, 1988.
[28] S.D. Persunick, “Statistics of Statics of general class of avalanche detectors with application to optical communication, “Bell Syst. Tech.J., 001.50, no.10, pp.3075-3095, Dec.1971.
[29] S.D. Personick, “New reaults on avalanche multiplication statistics with application to optical detection, “Bell Syst. Tech.J., vol. 50, no. 1, pp. 167-189, Jan. 1971.
[30] C.W. Helstrom, Probability and Stochastic Processes for Engineers, pp. 592-596, New York, 1984.
[31] C.W. Helstrom, Statistical Theory of Signal Detection, Perqamon Press, p.144, New York, 1975.
[32] C.W. Helstrom, Signal Detection and Estimation Part Ⅰ, San Diego, pp. 247-259,1988.
指導教授 賀嘉律(Chia-Lu Ho) 審核日期 2000-7-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡