博碩士論文 82343004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.238.36.32
姓名 鍾秋峰(Chiou-Feng Jueng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 非線性振動系統之動態分析及系統判別
(The Dynamics Analysis of Nonlinear Vibration System and Modeling of a Rotating System)
相關論文
★ 新型扭力測量器之設計與製作★ 動態模糊系統最佳化響應與穩定性之控制
★ 結構系統動態行為之系統建模與識別★ 滑動模式控制在追蹤問題的應用方法改良
★ 加速電子秤讀取之硬體設計與系統鑑別★ 數位訊號處理器於磁浮系統控制之應用
★ 移動載重在無限長樑上對地表振動之影響★ CNC系統不連續NURBS曲線之處理
★ CNC切削工具機使用Mastercam系統後對於2-D平面加工流程之影響與分析★ 六腳機械載具之設計與動態分析
★ 球面機構應用於機器手臂的動態分析★ 四足步行機器人之設計與動態分析
★ 二足機器人之動態平衡分析★ 二足機器人之模糊邏輯ZMP產生器及IC設計
★ 二足機器人之動態步行軌跡分析★ 引擎可變汽門機構動態模擬分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文討論非線性振動系統之吸振器動態及轉動系統模化,對於吸振器之討論,以不對稱非線性振動系統為數學模型。整體架構大略為以下步驟: 首先推導其振動模式,包含主振系統及吸振器部分之非線性振動方程式。然後分析此二系統之動態特性,使用分析工具為 Harmonic Balance, Floquet Theory。六組不同系統參數造成各種不同之動態行為,結果在較高頻區域有二或三區塊顯示分歧現象(Bifurcation Phenomena),並在共存區之鞍點-節點分歧現象裏,主要共振區右側峰值為存在於吸振器之操作頻帶,其分析結果說明新的共存現象發生於很強的非線性系統。之後處理穩定性的問題,更深入探討系統之變化,隨參數之改變,完整描述系統動態結構的轉變。最後為模化的探討,本文的方法為使用不平衡引發之旋轉力,計算其輸入作用力及輸出振幅間相角關係,以完成其參數判別。利用根軌跡及Floquet-Liapunov 理論,驗證其穩定性分析結果,再從電腦模擬結果與實驗比較,證明此種方法之可行性。
摘要(英) ABSTRACT
In this study, we concern with the dynamics behavior of nonlinear vibration system that contain absorber and modeling of a rotating system. For the absorber system, a mathematical model of an asymmetrically nonlinearity is proposed. The analytical work on this nonlinear vibration absorber was performed by the harmonic balance method using Floquet theory. We analyze six cases of dynamic phenomena with various system parameters. Two or three unstable regions show bifurcation phenomena at a high vibration frequency. The right peak of the primary resonance of the saddle-node bifurcation in the region of coexistence is close to the bandwidth of the absorber. The results demonstrate that new phenomena will occur in a strongly nonlinear system. For the system modeling, the centrifugal force induced by an unbalanced mass is used as the input signal, and the phase between the input signal and the measured output vibration amplitude is calculated to perform the identification. Stability analysis and system performance are evaluated by using the root locus and the Floquet-Liapunov theorem. A comparison between the simulation results and some experimented data shows the feasibility of the proposed approach.
關鍵字(中) ★ 控制
★ 振動
關鍵字(英) ★ control
★ Vibration
論文目次 Contents
Page
Abstract………………………………………………………………………….…....1
Contents……………………………….……………………………………….….…..2
List of Figures……………………………………………………………………..….3
List of Tables……………………………………………………………………….…5
Chapter 1. Introduction……………………………………………………………...7
Chapter 2. Formulation of the Problem and Theoretical Analysis……………....10
2-1 Equations of Motion……………………………………...…………..……10
2-2 Methods of Dynamics Analysis…………………………………………....13
2-3 Stability Analysis…………………………………………………………..14
Chapter 3. The Dynamics Analysis ……………..…………………………………19
Chapter 4. Results of Stability and Bifurcation Analysis………………………...36
4-1 Stability and Bifurcation Analysis…………………………………………36
4-2 Analysis Result and Discussion…………………………………………....38
Chapter 5. Modeling of Rotating System………………………………...………..61
5-1 Algorithm of Identification…………………………………………….…..61
5-2 The Apparatus and The Experiment…………………………….……...….62
5-3 Experiment with Oil Film Bearings and Identification Results……………65
Chapter 6. Conclusion……………………………………………………………....82
References………………………………………………………………………..….84
參考文獻 References
1. H. Frahm, “Device for Damping Vibration of Bodies”, U.S. Patent No. 989, 958, 1911.
2. J. Ormondroyed and J. P. Den Hartog, “Theory of Dynamic Vibration Absorbers”, Trans. ASME, Vol. 50, PAPM-241, 1928.
3. J. P. Den Hartog, “Mechanical Vibrations, 4th ed.”, McGraw-Hill, New York, 1956.
4. R.E. Roberson, “Synthesis of a Nonlinear Dynamic Vibration Absorber”, Journal of the Franklin Institute, Vol. 254, pp. 205-220, 1952.
5. H. J. Rice and J.R. Mc Craith. “Practical Nonlinear Vibration Absorber Design”, J. of Sound and Vib. Vol. 116(3), pp. 545-559, 1987.
6. J. C. Nissen and K. Kopp, B. Schmalhorst, "Optimization of a Nonlinear Dynamic Vibration Absorber", J. of Sound and Vib., Vol. 99(1), pp. 149-154, 1985.
7. P. Friendmann, C. E. Hammond and T. H. Woo, “Efficient Numerical Treatment of Periodic Systems with Application to Stability Problems”, International Journal for Numerical Methods in Engineering, Vol. 11, pp.1117-1136, 1977.
8. H. F. Baure, “Steady State Harmonic and Combination Response of a Non-linear Dynamic Vibration Absorber”, Trans. ASME J. Appl. Mech. 33, No. 1, pp. 213-216, 1996.
9. A. F. Potekhin and Ye. I. Frenkel, “Vibrations in a system with a non-linear dynamic absorber with a clearance-elasticity characteristic”, Tr. Tambovskogo in-takhim. mashino-stroyeniya. No. 3, pp.149-155, 1969.
10. N. Kloster and C. Knudsen, “Bifurcations near 1:2 subharmonic resonance in a structural dynamics model”, Chaos, Solitons and Fractals 5, pp. 55-66. 1995.
11. W. Szemplińska-Stupnicka and J. Rudowski, “Local methods in predicting occurrence of chaos in two-well potential systems: superharmonic frequency region”, Journal of Sound Vibration 152, pp. 57-72. 1992.
12. H. G. Schuster, “Deterministic chaos – an introduction”, Physik-Verlag, Weinheim, pp. 126-130. 1984.
13. K.B. Blair, C.M. Krousgrill and T.N. Farris, “Nonlinear Dynamic Response of Shallow Arches to Harmonic Forcing”, J. of Sound and Vib. 202, pp. 717, 1997.
14. Z.-M. Ge, H.-S. Yang, H.-H. Chen and H.-K. Chen, “Regular and chaotic dynamics of a rotational machine with a centrifugal governor”, International Journal of Engineering Science 37, pp. 921-943. 1999.
15. S. W. Shaw, “The dynamics of a harmonically excited system having rigid amplitude constraints, Journal Applied Mechanics”, Transactions of the ASME 52, pp. 453-458. 1985.
16. A. Raghothama and S. Narayanan, “Bifurcation and chaos of an articulated loading platform with piecewise non-linear stiffness using the incremental harmonic balance method”, Ocean Engineering 27, pp. 1087-1107. 2000.
17. C. Holmes and P. J. Holmes, “Second order averaging and bifurcations to subharmonics in Duffing’s equation”, Journal Sound Vibration 78, pp. 161-174. 1981.
18. K. Yagasaki, “Higher-order averaging and ultra-subharmonics in forced oscillators”, Journal of Sound Vibration 210, pp. 529-553. 1998.
19. H. Kawakami, “Bifurcation of periodic responses in forced dynamic nonlinear circuits: computation of bifurcation values of the system parameters”, IEEE Transactions on Circuits and Systems CAS-31, pp. 248-260. 1984.
20. H. Kawakami and T. Yoshinaga, “Codimension Two Bifurcation and its Computational Algorithm”, Bifurcation and Chaos, Theory and Applications Edited by J. Awrejcewicz Springer-Verlag, Berlin, pp. 97-132, 1995.
21. A. H. Nayfeh and D. T. Mook, “Nonlinear Oscillations”, John Wiley & Sons, New York, 1979.
22. C.S. Hsu, “Impulsive Parametric Excitation: Theory” J. Apply. Mech. 39, 551, 1972.
23. J. Guckenheimer and P. Holmes, “Nonlinear oscillations, dynamical systems, and bifurcations of vector fields”, Springer-Verlag, New York, pp. 376-396. 1983.
24. Y. A. Kuznetsov, “Elements of applied bifurcation theory”, Springer-Verlag, New York, 1995.
25. V. J. Steffen and D. A. Rade, ”An Identification Method of Multi-degree-of-Freedom System Based on Fourier Series”, The International Journal of Analytical and Experimental Modal Analysis, Vol.6,No4, Oct., pp.271-278,1991.
26. K. Yasda, S. Kawamura and K. Watanbe, “Identification of Nonlinear Multi-Degree-of Freedom Systems (Presentation of an Identification Technique”, JSME International Journal: Series III, Vol. 31, No.1, pp.8-14, 1988.
27. H. T. Yau, C. K. Chen and C. L. Chen, “Chaos and Bifurcation-Analysis of a Flexible Rotor Supported by Short Journal Bearings with Nonlinear Suspension” Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, Vol 214, Iss 7, pp. 931-947, 2000.
28. Y. C. Hsiao and P. C. Tung, “Coalescence of the primary responses and the secondary responses in a nonautonomous system”, Physics Letters A 291, pp. 237-248, 2001.
29. C. Hayashi, “Nonlinear oscillations in physical systems”, Princeton University Press, Princeton, (Chapter 1), 1964.
30. Y. T. Leung and S. K. Chui, “Non-linear Vibration of Coupled Duffing Oscillators by an Improved Incremental Harmonic Balance Method”. J. of Sound and Vib., 181(4), pp. 619-633, 1995.
31. A. H. Nayfeh, “Perturbation Methods”, John Wiley & Sons, New York, 1973.
32. P. Friedmann and C.E. Hammond, “Efficient Numerical Treatment of Periodic Systems with Application to Stability Problems”, Int. J. Numer. Method Eng. 11, pp. 1117, 1977.
33. C. Padmanabhan, and R. Singh, “Analysis of periodically excited non-linear systems by a parametric continuation technique”, Journal of Sound Vibration 184, pp. 35-58. 1995.
34. A. Raghothama and S.Narayanan, “Bifurcation and chaos of an articulated loading platform with piecewise non-linear stiffness using the incremental harmonic balance method”, Ocean Engineering 27, pp.1087-1107, 2000.
35. T. SÖderstrÖm, P. Stoica, “System Identification”, Prentice Hall, New York, 1989.
36. K. Szabelski and J. Warminski, ”Parametric Self-Excited Non-linear System Vibrations Analysis with Inertial Excitation”, Int. J. Non-Linear Mechanics, Vol.30, No.2, pp. 179-189, 1995.
指導教授 張江南(Jiang-Nan Jang) 審核日期 2002-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明