博碩士論文 82345014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:18.119.123.32
姓名 黃志雄(Chih-Shoung Huang)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 物件輪廓導向之低位元率視訊編碼研究及其應用
(Object-Based Very Low Bit-Rate Video Coding and Its Application)
相關論文
★ 資料儲存系統之渦輪碼與訊號處理研究★ 10Gb/s MM XFP光收發模組設計與實現
★ 資訊產品自動化測試之研究★ 高電流密度鰭式氮化鎵高電子遷移率電晶體研究
★ 電子郵件及壓縮檔案解碼之研究★ 正交多載波分頻多工系統 通道估測技術之研究通道估測技術之研究
★ 插值時序恢復之研究與應用★ 資料儲存系統之通道研究
★ 全數位化π/4-shifted DQPSK 之分析與實現★ 校園多媒體無線通訊系統通道編∕解碼器之研究
★ 資料儲存系統之調變碼研究★ 利用紅外線傳輸動態影像(H.263)之研究
★ 數位式上昇餘弦函數濾波器最佳化設計★ 資料儲存PRML通道系統之全數位插值時序恢復研究及設計
★ IrTran-P環境下之JPEG影像錯誤偵測與改善★ FIR濾波器於二冪次係數空間之研究與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 二十一世紀無疑地是網際網路與無線通訊的時代,雖然在提供寬頻的網路是未來的趨勢,頻寬的有效利用總是需要的。因為在有限的頻寬內,提供更豐富服務的需求永遠存在,因此考量視訊傳送品質與頻寬的有效利用,超低位元率視訊壓縮編碼在視訊通訊中有其必要;這類的視訊通訊包括無線視訊通訊及各種網際網路多媒體服務。超低位元率視訊壓縮編碼技術已研究長達十年,相關的國際標準有H.263, MPEG-4及MPEG-7。傳統以方塊編碼為基礎的壓縮編碼技術仍然是H.263及MPEG-4的主要編碼技術,即使「視訊物件層面」(video object plane─VOP) 已經成為MPEG-4編碼之基本元件,常用的超低位元率視訊壓縮編碼技術有兩種:模型導向編碼與物件輪廓導向編碼。近年來,由於對任意場景物件模型的難以建立以及高計算複雜度,使得物件輪廓導向編碼法則漸漸成為超低位元率視訊壓縮編碼的主流,在物件輪廓導向編碼中,必須用到三組參數,那就是物件的形狀、運動參數及色彩。他們分別由物件切割、運動估測以及運動補償三個基本單元來處理,在過去,大部份的超低位元率視訊壓縮編碼研究中,物件形狀資訊是一定要傳送到解碼端且都利用一般的區域成長法則來產生物件形狀輪廓,在參數抽取部份,利用物件在三度空間模型化的運動轉化為平面空間的運動參數估測是最近常用的法則,然通常都忽略了非剛性物件引起的失真補償。
本篇論文提出一種以影像柱狀圖波谷分析以及利用物件與鄰近物件間的屬性關係,精確地切割出物件輪廓,並藉由物件區域的面積重心以及修正過的直線霍夫轉換法則穩定地抽取出物件運動參數,其中物件的形狀資訊是毋需傳送到解碼端的。本篇論文利用一個簡化的直線霍夫轉換法則大幅度的改善霍夫轉換中計算複雜度問題,同時物件方位也因此而更穩健地取得,用以估測物件移動的參數之選擇與抽取對運動估測的效能表現是非常重要的,本篇論文針對幾何參數有深入的分析與評估,另外,非剛性物件的運動補償也一併納入探討,其中利用單一碼簿的向量量化法則於一般的影像序列,而結合漢米爾編碼之混合式方塊切割編碼則適用於影像序列間差異極大的場合,本篇論文包括了完整的理論分析、實驗結果與實務應用,從實驗結果顯示,一個在物件區域切割、運動估測及估測失真補償各方面都有創意性的強化與具體的改善已經達成,再者,從實際的系統試用評估也顯示,一個高效能的實用化超低位元率視訊壓縮編碼視訊傳送系統已成功地建立。
摘要(英) It is true that the 21-th century is an Internet and wireless world. In spite that provides the broadband network is the trend in future, the bandwidth is effectively employed is necessary because the requirement to provide more services in a finite bandwidth is existed forever. Consider the video quality and effective usage of bandwidth, very low bit-rate (VLB) video coding is essential in visual communications, such as mobile visual communication and multimedia services on the Internet. VLB coding techniques have been developed for decade year. The related standards have H.263, MPEG-4 and MPEG-7. The traditional block—based coding is still the major technique for H.263 and MPEG-4 even video object plane (VOP) is a basic element in MPEG-4.The popular algorithms for VLB coding have two kinds. They are model-based coding and region contour-based coding. Recently the region contour-based coding becomes the major algorithm for VLB coding because of hard to establish the object model and the computational complexity for arbitrary scenes. Three parameter sets have to be used in region contour-based VLB coding. They are regional shape, motion and color and are processed by region segmentation, motion estimation and compensation. The shape information has to be transmitted and be generated by the simple region-growing method in most of past algorithms in VLB coding. The parameter modeling from 3D mapping onto 2D for object moving is mostly adopted in the feature extraction and the motion compensation of non-rigid object is neglected.
A new region contour-based video coding technique is proposed in this dissertation. It precisely extracts the regions using histogram concavity analysis of the image and the attributes among the regions, extracts the motion parameters by means of region area, the gravity center of region and the modified straight line Hough transform (SLHT) algorithm. No shape information needs to be transferred to the decoder here. The huge amount of the computational complexity in the Hough transform is largely reduced by the simplified SLHT. Furthermore, the object orientation can be obtained robustly using the modified SLHT algorithm. The selection and extraction of the parameters used to estimate the object moving is very important for the performance of motion estimation. In this dissertation, the analysis and evaluation in detail for the geometric features is presented. Furthermore, the motion compensation of non-rigid objects is included in this dissertation. Meanwhile vector quantization (VQ) with a universal codebook is adopted for the general video sequences. The hybrid block truncation coding (BTC) with Hamming codes is employed to compensate the distortion caused by the non-rigid objects while the differences among the video sequences is large. The experimental results even the empirical application is presented in this dissertation. The experimental results indicate that the creative enhancements and significant improvements in region segmentation, motion estimation and prediction compensation is achieved. Furthermore, a realized VLB video delivery system with high performance can be successfully built up from the evaluation of the field trial.
關鍵字(中) ★ 直線霍夫轉換
★ 霍夫轉換
★ 非旋轉位移變化的
★ 視訊編碼
★ 低位元率
★ 物件輪廓
★ 非對稱式用戶迴路
關鍵字(英) ★ HT
★ STIRS
★ Video Coding
★ very low bit-rate
★ VLB
★ Object-based
★ SLHT
★ ADSL
論文目次 封面
論文提要
誌謝
內文一
內文二
Abstract
CONTENTS
List of Figures
List of Tables
CHAPTER 1 INTRODUCTION
1.1 MOTIVATIONS
1.2 OBJECT-BASED VIDEO CODING OVERVIEW
1.3 APPLICATION CONSIDERATIONS
1.4 ORGANIZATION OF THE DISSERTATION
CHAPTER 2 OBJECT FEATURE SELECTION AND EVALUATION
2.1 THE REPRESENTATION OF THE OBJECT SHAPE
2.2 THE PROPSED ALGORITHM AND OTHER ALTERNATIVES FOR COMPARISON
2.3 PERFORMANCE EVALUATION AND COMPARISON
2.4 SUMMARY
CHAPTER 3 REGION-BASED VIDEO CODING USING A GEOMETRIC MOTION COMPENSATION
3.1 THE PROPOSED CODING SCHEME
3.2 REGION SEGMENTATION USING MULTI-LEVEL HISTOGRAM CONCAVITY ANALYSIS
3.3 GEOMETRIC MOTION ESTIMATION AND COMPENSATION
3.4 SIMULATION RESULTS
3.5 SUMMARY
CHAPTER 4 THE HYBRID BLOCK TRUNCATION CODING FOR NON-RIGID OBJECT MOTION COMPENSATION
4.1 THE HYBRID BTC CODING
4.2 HAMMING CODE AS A UNIVERSAL CODEBOOK
4.3 DPCM CODING FOR SIDE INFORMATION OF BTC
4.4 PERFORMANCE COMPARISON AND DISCUSSIONS
4.5 SUMMARY
CHAPTER 5 DESIGN OF THE ADSL-BASED VERY LOW BIT-RATE VIDEO DELIVERY SYSTEM
5.1 DESIGN ISSUES OF VLB VIDEO SERVER
5.2 SYSTEM OVERVIEW
5.3 THE PROPOSED VIDEO SERVER
5.4 OPERATIONAL FLOW CONTROL
5.5 PERFORMANCE TEST AND DISCUSSIONS
5.6 SUMMARY
CHAPTER 6 CONCLUSIONS
REFERENCES
參考文獻 [1] K. Aizawa and H. Harashima, “Model-based analysis synthesis image coding (MBASIC) system for a person’s face,” Signal Processing: Image Communication, vol.1, no.2, pp. 139-152, October 1989.
[2] H.G. Musmann, M. Hotter, and J. Ostermann, “Object-oriented analysis-synthesis coding of moving images,” Signal Processing: Image Communication, vol.1, no.2, pp. 117-138, October 1989.
[3] W. Lei et al., "Very low bit-rate video coding with DFD segmentation," Signal Processing: Image Communication, vol.7, pp.419-434, 1995.
[4] M. Soryani and R. J. Clarke, " Coding moving image sequences by segmentation of difference frames and motion-adaptive frame interpolation," IEE Electron Letter 25, pp. 794-795, June 1989.
[5] G. H. Lee, J. S. Kim, and R. H. Park, "Video coding using variable block-size segmentation by motion vectors", Journal of Visual Communication and Image Representation, vol. 5, no. 4, pp. 342-355, December 1994.
[6] S. B. Chae, J. S. Kim, and R. H. Park, "Video coding by segmenting motion vectors and frame differences," Optical Engineering Journal, vol. 32, no. 4, pp. 870-876, April 1993.
[7] Y. Yokoyama, Y. Miyamoto, and M. Ohta, " Very low bit rate video coding using arbitrarily shaped region-based motion compensation," IEEE Trans. On Circuits and Systems for Video Technology, vol. 5, no. 6, pp. 500-507, December 1995.
[8] S.C. Han and J.W. Woods, “Adaptive coding of moving objects for very low bit rate,” IEEE Journal on Selected Area in Communications, vol. 16, no.1, pp. 56-70, January 1998.
[9] Y.C. Li and Y.C. Chen, “A hybrid model-based image coding system for very low bit-rate coding,” IEEE Journal on Selected Area in Communications, vol. 16, no.1, pp. 28-41, January 1998.
[10] Edouard Francois et al., "Coding algorithm with region-based motion compensation," IEEE Trans. On Circuits and Systems for Video Technology, vol. 7, no. 1, pp. 97-108, February 1997.
[11] Chuang Gu and Murat Kunt, "Contour simplification and motion compensated coding," Signal Processing: Image Communication, vol.7, pp. 279-296, 1995.
[12] R. C. Gonzalez and R. E. Woods, "Digital Image Processing," Addison-Wesley Publishing Company, Inc., 1992.
[13] J. Illingworth and J. Kittler, "A survey of the Hough transform," Computer Vision, Graphics, and Image Processing 44, pp. 87-116, 1988.
[14] D. C. W. Pao, H. F. Li, and R. Jayakumar, “ Shapes recognition using the straight- line Hough transform: theory and generalization,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.14, no.11, pp. 1076-1089, November 1992.
[15] A. Gersho, “On the structure of vector quantizers,” IEEE Trans. On Information Theory, vol. IT-28, no.2,pp.157-166, March 1982.
[16] S. Lin and D. J. Costello, Jr., Error Control Coding: Fundamentals and Applications, Englewood Cliffs, Prentice Hall, 1989.
[17] Digital Audio Visual Council, “DAVIC Server TC Baseline”, March 1995.
[18] T. R. Hsing, et.al, “Video communications and services in the copper loop”, IEEE Comm. Mag., pp. 62-68, Jan. 1993.
[19] L.W. Lee, etc., “A PC-based video server for true VOD and near VOD system”, RAM’96, Taipei, pp.33-36, 1996.
[20] Kangbin Yim, et.al, ”Design Issues On A popularity-Independent Video-On-Demand Server,” IEEE Transaction on Consumer Electronics, Vol.45, No.2, pp455-464, May 1999.
[21] C. Griwodz, M. Bar, and L.C. Wolf, “ Long-term Movie Popularity Models in Video-On-Demand System or, the Life of an On-Demand Movie,” Proc. Multimedia 97, ACM Press, New York, pp.349-357, 1997.
[22] A. Dan, D. Sitaram and P. Shahabuddin, “Dynamic Batching Policies for an On-Demand Video Server,” Multimedia systems, No.4, pp.112-121, 1996.
[23] C.S. Huang, et.al “Design of video service engine with SCSI for an ADSL-based Near Video On Demand,” IEEE Transaction on Consumer Electronics, Vol.43, No.3, pp.386-393, August 1997.
[24] Jack Lee, “Parallel Video Server: A Tutorial,” IEEE Multimedia, Vol5, No.1, pp.20-28, spring 1998.
[25] S. Chen and D. Towsley, “ A Performance Evaluation of RAID Architecture,” IEEE Trans. Computers, Vol.45, No. 10, pp.1116-1130, Oct. 1996.
[26] T. Sikora, “The MPEG-4 video standard verification model,” IEEE Trans. on CSVT, vol. 7, no. 1, pp. 19-31, Feb. 1997.
[27] K.S Fu and J.K. Mui, “A survey on image segmentation,” Pattern Recognition vol.13, pp. 3-16, January 1981.
[28] P.K. Sahoo, S. Soltani, and A. K. C. Wong, “A survey of thresholding techniques,” Computer Vision, Graphics, and Image Processing 41, pp. 233-260, 1988.
[29] B. Bhanu and O. D. Faugeras, “Segmentation of image having unimodal distributions,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.4, no.4, pp. 408-419, July 1982.
[30] P. K. Sahoo et al., "Threshold selection using a minimal histogram entropy difference," Optical Engineering, Vol.36, No. 7, pp. 1976-1981, July 1997.
[31] V. R. Udpikar and J. P. Raina, “BTC image coding using vector quantization,” IEEE Trans. Commn., Vol. 35, No. 9, pp. 352-356, September 1987.
[32] E. J. Delp and O. R. Mitchell, “Image compression using BTC,” IEEE Trans. Commn., Vol. 27, No. 9, pp. 1335-1342, September 1979.
[33] N. S. Jayant and P. Noll, Digital Coding of Waveforms - Principles and Applications to Speech and Video, Englewood Cliffs, Prentice Hall, 1984.
[34] Y. Wu and D. Coll, “BTC-VQ-DCT hybrid coding of digital images,” IEEE Trans. Commn., Vol. 39, No. 9, pp. 1283-1287, September 1991.
[35] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression, Kluwer Academic Publisher, 1992.
[36] K. Natarajan, “Video servers take root”, IEEE Spectrum Mag., pp. 66-69, April 1995.
[37] W.Y. Chen and D. Waring, ”Applicability of ADSL to support video dial tone in the cooper loop”, IEEE Communic. Mag., pp. 102-109, May 1994.
[38] T. Russel Hsing, J. W. Lechleider, D. L. Waring, ”HDSL and ADSL: giving new life to copper”, Bellcore Exchange, pp. 3-7, March 1992.
[39] I. C. Jou, etc., “ ADSL-based interactive multimedia on demand Trial system”, Telecom. Tech. Conference 1997, pp. 112-118.
[40] “Small Computer System Interface International Standard”, ISO/IEC JTC1, ISO9316.
[41] T. Meier and K.N. Ngan, “ Automatic segmentation of moving objects for video object plane generation,” IEEE Transaction on CSVT, Vol.8, No. 5, pp.525-538, September 1998.
[42] D. Wang, “ Supervised video segmentation based on watersheds and temporal tracking,” IEEE Transaction on CSVT, Vol.8, No. 5, pp.539-546, September 1998.
[43] M. J. Biggar and A. G. Constantinides, “ Segmented video coding,” in Proceedings International Conference on Acoustic Speech, Signal Processing ’88, New York, pp. 1108-1111, April 1988.
[44] S. M. Lee, N. C. Kim, and H. Son, “ Very low rate coding of motion video using 3-D segmentation with two change detection masks,” in Proceedings SPIE Visual Communications and Image Processing ’90 Lausanne, Switzerland, Vol. 1360, pp. 524-531, October 1990.
[45] C. T. Zahn and R. Z. Roskies, “ Fourier Descriptor for plane closed curves,” IEEE Transaction on Computer, Vol.c-21, No. 3, pp.269-281, March 1972.
指導教授 林銀議(Yin-Yi Lin) 審核日期 2000-6-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明