博碩士論文 83343003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:34.204.176.125
姓名 王得安(De-An Wang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 撓性結構之主動振動控制
(Active Vibration Control of Flexible Structures)
相關論文
★ 四弦型非對稱光學讀取頭致動器模態共振分析與抑制★ 網路連接儲存裝置熱分析與設計
★ 小型垂直軸風力發電機之有限元素分析★ 平板受聲源作用之振動與輻射聲場分析
★ 壓電吸振器應用於平板的振動與噪音控制★ 主動式吸振器應用於薄板減振與減噪
★ 離散振動系統之分析軟體製作★ 有洞薄方板之動態分析與激振後之聲場
★ 速度與位移回饋式壓電吸振器之減振研究★ 以LabVIEW為介面之模態測試軟體製作
★ 電壓回饋壓電吸振器對平板之振動控制★ 可調式消音閥的分析與最佳設計
★ 旋轉樑的動態分析與壓電吸振器之減振設計★ 自感式壓電吸振器之設計與應用於矩形板之減振
★ 多孔薄方板之振動與聲場分析★ 旋轉雷立夫樑受週期性側向與軸向力之動態響應分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在撓性結構之研究與設計中,結構振動為一重要的研究主題。本
論文將探討受外力激振之撓性結構的主動振動控制,控制目標為全域
降低結構振動。在本文中將以獨立模態控制法為架構,利用離散式感
測器與制動器進行控制。在模態控制法中,需要知道各個模態的模態
座標及模態速度,以便進行控制法則的設計與控制系統的實現。在此
將利用模態濾波的技術求得相關的模態座標及模態速度。由於有外擾
的存在,若只採用狀態回授控制,則無法有效抑制結構振動。本文將
引入模態空間外力抵消的概念,以降低外擾的影響。為了能實現模態
空間外力相消,本研究將使用三種不同的模態外力估測器,並發展三
種不同的控制方法來實現主動式振動控制。第一種方法採用模態空間
前饋及回饋控制抑制結構振動。在此方法中,外力估測器是利用逆動
態技術來設計。控制法則則是用擴增型最佳控制理論求得,此理論乃
是將外擾當成一個增生的狀態變數進行求解。第二種方法是採用Hoo
控制技術來設計控制系統。在此,利用模型誤差補償器當成模態外力
估測器,估測未知、任意的外擾,以達成模態外力抵消的構想。但在
外力相消之後,仍有些許的殘留外力存在,因此設計了Hoo控制器,
以確保外力壓抑的效果。最後,一個新的數位式變結構控制方法將應用於撓性結構主動振動控制。變結構控制對外擾和系統參數誤差具有
強健性。此數位式變結構控制器內含一個外力估測器,可以估測未知
的外擾。如此便不需要外擾上界以設計變結構控制器,大大提高了變
結構控制的實用性。本論文將著重於外力估測器性能的探討以及三種
控制方法對結構振動改善的情形。
摘要(英) Mechanical vibration is an important topic in the study and design of
exible structures.
This dissertation studies the active vibration control of a
exible structure
subjected to arbitrary, unmeasurable disturbance forces. The control objective is to
reduce the structure vibration globally. The concept of independent modal space
control is adopted. Here, discrete sensors and actuators are used. The modal lters
are chosen as the state estimator to obtain the modal coordinates and modal velocities
for the modal space control. Because of the existence of the disturbance forces,
the vibration control only with the state feedback control law can not suppress the
vibration well. The method of disturbance forces cancellation is then added in the
control loop. In order to implement the disturbance forces cancellation, the unknown
disturbance modal forces must be observed. Three di erent kinds of control
algorithms are developed, in the dissertation, for the active vibration control. All
of them involve the suitable disturbance force observers to observe the disturbance
modal forces. The observed disturbance modal forces then are included in the control
loops to cancel out the undesired excitation. The rst method employs the modal
space feedforward and feedback control loops to suppress the structure vibration. A
disturbance force observer, based on the inverse dynamics technique, is established.
The control gains are derived from the extended optimal control algorithm, where
the disturbance modal forces are treated as exogenous state variables. Second, the
author applies the H1 control to the structure vibration attenuation. The model
error compensator is employed to observe the unknown disturbance modal forces forthe direct cancellation. After the implementation of the disturbance modal forces
cancellation, there are still some residual disturbance modal forces which excite the
structure. The disturbance attenuation problem is concerned in the design of the
state feedback control law. For ensuring the in
uence of the residual disturbance
modal forces is reduced to an acceptable level, the robust static H1 state feedback
controller is designed here. In the last, the author studies the application of using
the discrete-time variable structure control method to reduce the vibration of the
exible structure. A discrete-time variable structure controller with a disturbance
force observer is adopted here due to its distinguished robustness property of insensitiveness
to parameters uncertainties and external disturbances. The included
disturbance force observer can observe the unknown disturbance modal forces, which
are used in the discrete-time variable structure control law to cancel out the excitations.
The upperbound limitations of the unknown disturbances in the variable
structure control, therefore, are no longer needed. The performances of estimating
the disturbance modal forces and the vibration reduction of the
exible structure of
the three control laws are discussed.
論文目次 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
1 Introduction 1
1.1 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Equation of Motion of the Flexible Structure 10
2.1 Boundary-Value Problem of a Beam . . . . . . . . . . . . . . . . . . . 10
2.2 The Eigenvalue Problem of a Cantilever Beam . . . . . . . . . . . . . 14
2.3 Response of the Beam . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Dimensionless System Description . . . . . . . . . . . . . . . . . . . . 17
3 Independent Modal Space Control 20
3.1 Independent Modal Space Control . . . . . . . . . . . . . . . . . . . . 21
3.2 Point Actuators Forces . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Modal Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Observation Spillover and Control Spillover . . . . . . . . . . . . . . . 25
3.5 Dimensionless System Description . . . . . . . . . . . . . . . . . . . . 26
3.5.1 Continuous-Time System . . . . . . . . . . . . . . . . . . . . . 26
3.5.2 Discrete-Time System . . . . . . . . . . . . . . . . . . . . . . 28
4 Control Law Design 30
4.1 Nearly Optimal Control Law with a Disturbance Force Observer . . . 30
4.1.1 Disturbance Force Observer . . . . . . . . . . . . . . . . . . . 31
4.1.2 Nearly Optimal Control Law Design . . . . . . . . . . . . . . 33
4.2 H1-Based Control Law with a Model Error Compensator . . . . . . . 37
4.2.1 H1 Control Law Design . . . . . . . . . . . . . . . . . . . . . 38
4.2.2 Model Error Compensator . . . . . . . . . . . . . . . . . . . . 40
4.3 Discrete-Time Variable Structure Controller Design . . . . . . . . . . 44
4.3.1 Optimal Switching Function Design . . . . . . . . . . . . . . . 46
4.3.2 Discrete-Time Variable Structure Control Law with a Disturbance
Force Observer . . . . . . . . . . . . . . . . . . . . . . . 49
5 Numerical Results and Discussions 52
5.1 Nearly Optimal Control with a Disturbance Force Observer . . . . . . 52
5.1.1 Observation Spillover E ect Discussion . . . . . . . . . . . . . 53
5.1.2 Estimated States by Using Modal Filters . . . . . . . . . . . . 55
5.1.3 Disturbance Force Observer . . . . . . . . . . . . . . . . . . . 56
5.1.4 Modal Space Control . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 H1-Based Controller with a Model Error Compensator . . . . . . . . 60
5.2.1 Estimated States by Using Modal Filters . . . . . . . . . . . . 60
5.2.2 Modal Space Vibration Control with H1 Controller and MEC 61
5.3 Discrete-Time Variable Structure Control . . . . . . . . . . . . . . . . 65
5.3.1 Estimated States by Using Modal Filters . . . . . . . . . . . . 665.3.2 Modal Space Vibration Control by the Discrete-Time Variable
Structure Control Method . . . . . . . . . . . . . . . . . . . . 66
5.4 The Comparisons of the Three Control Methods . . . . . . . . . . . . 70
6 Conclusions 72
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2 Recommendations for Future Investigation . . . . . . . . . . . . . . . 74
Bibliography 75
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
參考文獻 1. C. R. Fuller, S. J. Elliott, and P. A. Nelson, Active Control of Vibration.
London: Academic Press Limited, 1996.
2. C. H. Hansen and S. D. Snyder, Active Control of Noise and Vibration. London:
E & FN SPON, 1997.
3. R. L. Clark, W. R. Saunders, and G. P. Gibbs, Adaptive Structures, Dynamics
and Control. New York: John Wiley & Sons, Inc., 1998.
4. W. Gawronski, Balanced Control of Flexible Structures. London: Springer-
Verlag, 1996.
5. S. M. Joshi, Control of Large Flexible Space Structures. Berlin: Springer-
Verlag, 1989.
6. K. V. Frolov and F. A. Furman, Applied Theory of Vibration Isolation System.
New York: Hemisphere Publishing Corporation, 1990.
7. H. S. Tzou and L. A. Bergman, Dynamics and Control of Distributed Systems.
UK: Cambridge University Press, 1998.
8. H. H. E. Leipholz and M. A. Rohman, Control of Structures. Boston: Kluwer
Academic, 1986.
9. K. Seto, F. Doi, and M. Ren, Vibration control of bridge towers using a
lumped modeling approach," ASME Journal of Vibration and Acoustics, vol.
121, pp. 95-100, January 1999.
10. J. Yang, Y. Suematsu, and Z. Kang, Two-degree-of-freedom controller to
reduce the vibration of vehicle engine-body system," IEEE Transactions on
Control Systems Technology, vol. 9, pp. 295-304, March 2001.
11. S. M. Yang, G. J. Sheu, and C. D. Yang, Vibration control of rotor systems
with noncollocated sensor/actuator by experimental Design," ASME Journal
of Vibration and Acoustics, vol. 119, pp. 420-427, July 1997
75
12. S. M. Yang and G. J. Sheu, Vibration control of a rotating shaft: an analytical
solution," ASME Journal of Applied Mechanics, vol. 66, pp. 254-259, March
1999.
13. M. J. Balas, Active Control of Flexible Systems," Journal of Optimization
Theory and Applications, vol. 25, pp. 415-436, 1978.
14. A. Grewal and V. J. Modi, Robust attitude and vibration control of the space
station," Acta Astronautica, vol. 38, pp. 139-160, 1996.
15. G. W. Neat, W. Melody, and B. J. Lurie, Vibration attenuation approach for
spaceborne optical interferometers," IEEE Transactions on Control Systems
Technology, vol. 6, pp. 689-700, November 1998.
16. B. N. Agrawal and H. Bang, Adaptive structures for large precision antennas,"
Acta Astronautica, vol. 38, pp. 175-183, 1996.
17. S. M. Joshi and A. G. Kelkar, Inner loop control of supersonic aircraft in
the presence of aeroelastic modes," IEEE Transactions on Control Systems
Technology, vol. 6, pp. 730-739, November 1998.
18. R. F. Fung and C. C. Liao, Application of variable structure control in the
nonlinear string system," International Journal of Mechanical Sciences, vol.
37, pp. 985-993, 1995.
19. S. Ying and C. A. Tan, Active vibration control of the axially moving string
using space feedforward and feedback controllers," ASME Journal of Vibration
and Acoustics, vol. 118, pp. 306-312, July 1996.
20. S. Kalaycioglu, M. Giray, and H. Asmer, Vibration control of
exible manipulators
using smart structures," Journal of Aerospace Engineering, vol. 11,
pp. 90-94, July 1998.
21. C. Y. Kuo and C. C. Huang, Active control of mechanical vibration in a circular
disk," ASME Journal of Dynamic Systems, Measurement, and Control,
vol. 114, pp. 104-112, March 1992.
22. M. J. Balas, Modal Control of Certain Flexible Dynamic System," SIAM
Journal on Control and Optimization, vol. 16, pp. 450-462, 1978.
23. L. Meirovitch and L. M. Silverberg, Globally Optimal Control of Self-Adjoint
Distributed Systems," Optimal Control Applications and Methods, vol. 4, pp.
365-386, 1983.
24. L. Meirovitch, Some Problems Associated with the Control of Distributed
Structures," Journal of Optimization Theory and Applications, vol. 54, pp.
1-21, 1987.
76
25. L. Meirovitch, H. Baruh, R. C. Montgomery and J. P. Williams, Nonlinear
Natural Control of an Experimental Beam," Journal of Guidance, Control,
and Dynamics, vol. 7, pp. 437-442, July-August 1984.
26. B. E. Schafer and H. Holzach, Experimental Research on Flexible Beam
Modal Control," Journal of Guidance, Control, and Dynamics, vol. 8, pp.
597-604, September-October 1985.
27. L. Meirovitch and H. Baruh, Control of Self-Adjoint Distributed-Parameter
Systems," Journal of Guidance and Control, vol. 5, pp. 60-66, January-
February, 1982.
28. L. Meirovitch, Dynamics and Control of Structures. New York: John Wiley
& Sons, 1990.
29. Y. Yam, T. L. Johnson, and J. H. Lang, Flexible system model reduction and
control system design based upon actuator and sensor in
uence functions,"
IEEE Transactions on Automatic Control, vol. AC-32, pp. 573-582, July
1987.
30. W. Gawronski and T. Williams, Model reduction for
exible space structures,"
Journal of Guidance, Control, and Dynamics, vol. 14, pp. 68-76,
January-February 1991.
31. A. Suleman, V. J. Modi, and V. B. Venkayya, Structural modeling issues in
exible systems," AIAA Journal, vol. 33, pp. 919-923, May 1995.
32. L. Meirovitch and H. Baruh, The Implementation of Modal Filters for Control
of Structures," Journal of Guidance, Control, and Dynamics, vol. 8, pp. 707-
716, November-December 1985.
33. A. Baz and S. Poh, Performance of An Active Control System with Piezoelectric
Actuators," Journal of Sound and Vibration, vol. 126, pp. 327-343,
1988.
34. A. Baz and S. Poh, Experimental Implementation of The Modi ed Independent
Modal Space Control Method," Journal of Sound and Vibration, vol. 139,
pp. 133-149 1990.
35. C. K. Lee and F. C. Moon, Modal sensors/actuators," ASME Journal of
Applied Mechanics, vol. 57, pp. 434-441, May 1990.
36. Zhang Xianmin, Liu Hongzhao and Caoweiqing, Active vibration control of
exible mechanisms," Chinese Journal of Mechanical Engineering, vol. 32, pp.
9-16, 1996.
37. Shao Changjian and Zhang Xianmin, Complex mode active vibration control
of high-speed
exible linkage mechanisms," Journal of Sound and Vibration,
vol. 234, pp. 491-506, 2000.
77
38. D. J. Inman, Active Modal Control for Smart Structures," Philosophical
Transactions of the Royal Society, Series A, vol. 359(1778), pp. 205-219,
2001.
39. G. J. Balas and J. C. Doyle, Control of lightly damped,
exible modes in
the controller crossover region," Journal of Guidance, Control, and Dynamics,
vol. 17, pp. 370-377, March-April 1994.
40. G. J. Balas and J. C. Doyle, Robustness and performance trade-o s in control
for
exible structures," IEEE Transactions on Control Systems Technology,
vol. 2, pp.352-361, December 1994.
41. I. N. Kar, T. Miyakura, and K. Seto, Bending and torsional vibration control
of a
exible plate structure using H-in nity -based robust control law," IEEE
Transactions on Control Systems Technology, vol. 8, pp.545-553, May 2000.
42. I. N. Kar, K. Seto, and F. Doi, Multimode vibration control of a
exible
structure using H-in nity -based robust control," IEEE/ASME Transactions
on Mechatronics, vol. 5, pp. 23-31, March 2000.
43. R. S. Smith, C. C. Chu, and J. L. Fanson, The design of H-in nity controllers
for an experimental non-collocated
exible structure problem," IEEE
Transactions on Control Systems Technology, vol. 2, pp. 101-109, June 1994.
44. W. Gawronski and K. B. Lim, Frequency weighting for the H-in nity and
H-2 control design of
exible structures," Journal of Guidance, Control, and
Dynamics, vol. 21, pp.664-666, July-August 1998.
45. C. J. Damaren and L. L. Ngoc, Robust active vibration control of a bandsaw
blade," ASME Journal of Vibration and Acoustics, vol. 122, pp. 69-76,
January 2000.
46. M. D. Piedmonte, P. H. Meckl, O. D. Nwokah, and M. A. Franchek, Multivariable
vibration control of a coupled
exible structure using QFT," International
Journal of Control, vol. 69, pp. 475-498, 1998.
47. S. B. Choi and S. S. Cho, Vibration and position tracking control of piezoceramic
based smart structures via QFT," ASME Journal of Dynamics, Measurements,
and Control, vol. 121, pp. 27-33, March 1999.
48. I. Horowitz, Survey of quantitative feedback theory (QFT)," International
Journal of Control, vol. 53, pp. 255-291, 1991
49. J. S. Vipperman, R. A. Burdisso, and C. R. Fuller, Active control of broadband
structural vibration using the LMS adaptive algorithm," Journal of
Sound and Vibration, vol. 166, pp. 283-299, 1993.
78
50. J. S. Vipperman and R. A. Burdisso, Adaptive feedforward control of nonminimum
phase structural systems," Journal of Sound and Vibration, vol. 183,
pp. 369-382, 1995.
51. H. S. Na and Y. Park, An adaptive feedforward controller for rejection of
periodic disturbances," Journal of Sound and Vibration, vol. 201, pp. 427-
435, 1997.
52. J. K. Hwang, C. H. Choi, C. K. Song, and J. M. Lee, Robust LQG control of
an all- clamped thin plate with piezoelectric actuators/sensors," IEEE/ASME
Transactions on Mechatronics, vol. 2, pp. 205-212, September 1997.
53. D. Young, Variable Structure Control for Robotics and Aerospace Application.
London: Elsevier, 1993
54. V. Rao, R. Damle, C. Tebbe, and F. Kern, The adaptive control of smart
structures using neural networks," Smart Materials & Structures, vol. 3, pp.
354-366, 1994.
55. S. M. Yang and G. S. Lee, Vibration control of smart structures by using
neural networks," ASME Journal of Dynamic Systems, Measurement, and
Control, vol.119, pp. 34-35, March 1997.
56. S. E. Burke and J. E. Hubbard, Distributed transducer vibration control of
thin plates," Journal of the Acoustical Society of America, vol. 90, pp. 937-
944, August 1991.
57. Y. Gu, R. L. Clark, C. R. Fuller, and A. C. Zander, Experiments on active
control of plate vibration using piezoelectric actuators and polyvinylidene
uoride
(PVDF) modal sensors," ASME Journal of Vibration and Acoustics, vol.
116, pp. 303-308, July 1994.
58. D. Sun, L. Tong, and D. Wang, Vibration control of plates using discretely
distributed piezoelectric quasi-modal actuators/sensors," AIAA Journal, vol.
39, pp. 1766-1772, September 2001.
59. E. Gordaninejad, A. Ray, and H. Wang, Control of forced vibration using
multi- electrode electrorheological
uid dampers," ASME Journal of Vibration
and Acoustics, vol. 119, pp. 527-531, October 1997.
60. B. L. Meng and J. S. Gibson, Optimal design of ber optic sensors for control
of
exible structures," Smart Material Structures, vol. 3, pp. 397-408, 1994.
61. R. L. Clark and S. E. Burke, Practical limitations in achieving shaped modal
sensors with induced strain materials," ASME Journal of Vibration and Acoustics,
vol. 118, pp. 668-675, October 1996.
79
62. J. Leng, A. Asundi, and Y. Liu, Vibration control of smart composite beams
with embedded optical ber sensor and ER
uid," ASME Journal of Vibration
and Acoustics, vol. 121, pp. 508-509, October 1999.
63. A. Ghoshal, E. A. Wheater, C. R. A. Kumar, and M. J. Sundaresan, Vibration
suppression using a laser vibrometer and piezoceramic patches," Journal of
Sound and Vibration, vol. 235, pp. 261-280, 2000.
64. D. F. Crawley, Intelligent structures for aerospace: a technology overview
and assessment," AIAA Journal, vol. 32, pp. 1689-1699, August 1994.
65. S. H. Chen, Z. D. Wang, and X. H. Liu, Active vibration control and suppression
for intelligent structures," Journal of Sound and Vibration, vol. 200,
pp. 167-177, 1997.
66. K. Y. Sze and L. Q. Yao, Modeling smart structures with segmented piezoelectric
sensors and actuators," Journal of Sound and Vibration, vol. 235, pp.
495-520, 2000.
67. R. E. Zee and P. C. Hughes, Mode localization in
exible spacecraft: a control
challenge," Journal of Guidance, Control, and Dynamics, vol. 23, pp. 69-76.
January- February 2000.
68. M. L. DeLorenzo, Sensor and actuator selection for large space structure
control," Journal of Guidance, Control, and Dynamics, vol. 13, pp. 249-257,
March-April 1990.
69. Y. K. Kang, H. C. Park, W. Hwang, and K. S. Han, Optimum placement of
piezoelectric sensor/actuator for vibration control of laminated beams," AIAA
Journal, vol. 34, pp. 1921-1926, September 1996.
70. M. Sunar and S. S. Rao, Distributed modeling and actuator location for
piezoelectric control systems," AIAA Journal, vol. 34, pp. 2209-2211, October
1996.
71. J. Q. Sun, S. M. Hirsch, and V. Jayachandran, Sensor systems for global
vibration and noise control," Journal of the Acoustical Society of America,
vol. 103, pp. 1504- 1509, March 1998.
72. G. J. Balas and P. M. Young, Sensor selection via closed-loop control objectives,"
IEEE Transactions on Control Systems Technology, vol. 7, pp. 692-705,
November 1999.
73. J. Kim, J. S. Hwang, and S. J. Kim, Design of modal transducers by optimizing
spatial distribution of discrete gain weights," AIAA Journal, vol. 39,
pp. 1969-1976, October 2001.
80
74. D. Ertur, Y. Li and C. D. Rahn, Adaptive Vibration Isolation for Flexible
Structures," ASME Journal of Vibration and Acoustics, vol. 121, pp. 440-445,
March, 1999.
75. S. Choura, Control of Flexible Structures with the Con nement of Vibrations,"
ASME Journal of Dynamic Systems, Measurement, and Control, vol.
117, pp. 155-164, January, 1995.
76. B. Friedland, Control System Design. New York: McGraw-Hill Book Company,
1987.
77. Y. Park and J. L. Stein, Closed-loop, state inputs observer for systems with
unknown inputs," International Journal of Control, vol. 48, pp. 1122-1136,
1988.
78. M. Hou and P. C. Muller, Design of Observers for Linear Systems with Unknown
Inputs," IEEE Transactions on Automatic Control, vol. 37, pp. 871-
875, November, 1992.
79. J. F. Tu and J. L. Stein, Model Error Compensator for Observer Design,"
International Journal of Control, vol. 69, pp. 329-345, 1998.
80. J. Y. Hung, W. Gao and J. C. Hung, Variable Structure Control: A Survey,"
IEEE Transactions on Industrial Electronics, vol. 40, pp. 2-22, January, 1993.
81. W. Gao, and J. C. Hung, Variable Structure Control of Nonlinear Systems:
A New Approach," IEEE Transactions on Industrial Electronics, vol. 40, pp.
45-55, January, 1993.
82. W. Gao, Y. Wang and A. Homaifa, Discrete-Time Variable Structure Control
Systems," IEEE Transactions on Industrial Electronics, vol. 42, pp. 117-122,
March, 1995.
83. Y. Eun, J. H. Kim and D. Cho, Discrete-Time Variable Structure Controller
with a Decoupled Disturbance Compensator and Its Application to a CNC
Servomechanism," IEEE Transactions on Control Systems Technology, vol. 7,
pp. 414-423, July, 1999.
84. L. Meirovitch, Analytical Methods in Vibration. New York: The MacMillan
Company, 1967.
85. S. Timoshenko, Vibration Problem in Engineering, 3rd ed. New Jersey: Van
Nostrand, Princeton, 1955.
86. E. Kreyszig, Advanced Engineering Mathematics, 5th ed. New York: John
Wiley & Sons, 1983.
87. K. Zhou and P. P. Khargonekar, An algebraic Riccati equation approach to
H1 Optimization," Systems & Control Letters, vol. 11, pp. 85-91, 1988.
81
88. P. J. Moylan, Stable Inversion of Linear System," IEEE Transactions on
Automatic Control, vol. 22, pp. 74-78, January, 1977.
89. G. Gu and P. Misra, Disturbance Attenuation and H1 Optimization with
Linear Output Feedback Control," Journal of Guidance, Control, and Dynamics,
vol. 17, pp. 145-152, January-February, 1994.
90. J. E. Dennis, Jr and D. J.Woods, New Computing Environments: Microcomputers
in Large-Scale Computing," SIAM Journal on computing, pp. 116-122,
1987.
91. V. I. Utkin, Sliding Modes in Control and Optimization. Berlin: Springer-
Verlag, 1992.
92. W. B. Gao, Foundation of Variable Structure Control. Beijing: China Press
of Science and Technology, 1990 (in Chinese).
93. A. J. Koshkouei and A. S. I. Zinober, Sliding Mode Control of Discrete-Time
Systems," ASME Journal of Dynamic Systems, Measurement and Control,
vol. 122, pp. 793-802, July, 2000.
94. H. Elmali and N. Olgac, Implementation of Sliding Mode Control with Perturbation
Estimation (SMCPE)," IEEE Transactions on Control Systems Technology,
vol. 4, pp. 79-85, January, 1996.
95. K. Ogata, Discrete-Time Control Systems, 2nd ed. New Jersey: Prentice-Hall
Inc, 1995.
指導教授 黃以玫(Yii-Mei Huang) 審核日期 2002-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明