博碩士論文 83345003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:18.207.238.169
姓名 吳偉賢(Wei-Hsien Wu)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 筆劃特徵用於離線中文字的辨認
(Off-Line Chinese Character Recognition Based on Stroke Features)
相關論文
★ 使用視位與語音生物特徵作即時線上身分辨識★ 以影像為基礎之SMD包裝料帶對位系統
★ 手持式行動裝置內容偽變造偵測暨刪除內容資料復原的研究★ 基於SIFT演算法進行車牌認證
★ 基於動態線性決策函數之區域圖樣特徵於人臉辨識應用★ 基於GPU的SAR資料庫模擬器:SAR回波訊號與影像資料庫平行化架構 (PASSED)
★ 利用掌紋作個人身份之確認★ 利用色彩統計與鏡頭運鏡方式作視訊索引
★ 利用欄位群聚特徵和四個方向相鄰樹作表格文件分類★ 利用可調式區塊比對並結合多圖像資訊之影像運動向量估測
★ 彩色影像分析及其應用於色彩量化影像搜尋及人臉偵測★ 中英文名片商標的擷取及辨識
★ 利用虛筆資訊特徵作中文簽名確認★ 基於三角幾何學及顏色特徵作人臉偵測、人臉角度分類與人臉辨識
★ 一個以膚色為基礎之互補人臉偵測策略★ 利用指紋紋路分佈順序及分佈模型作指紋自動分類
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 離線中文字辨認目前有兩大研究方向:一以統計式特徵(statistic feature)為主另一則以結構式特徵(structure feature)為主。前者著重對文字圖形的分析,抽取有用的特徵資訊;後者則著重於文字中的線段(或筆劃)本身及彼此之間的連結方式,從中取得特徵資訊。本文採後者為研究方向,首先抽取中文字?的筆劃,然後做辨認。
一般而言採結構特徵為主的離線中文辨認系統包含四大部分:前處理、筆劃抽取、大分類及辨認。前處理包括去雜訊及骨架化;筆劃抽取的目的在於取得一些有用的資訊,即該輸入字的特徵值。最後依據抽取的特徵值做辨認。
由於常用的中文字多達5401字,將輸入字一一與所有資料庫中的字做比對辨認十分沒效率,且沒必要。因此一般都會先對中文字做大分類,使每類字數減少。輸入的字先依同一分類原則做分類,然後才與各分派類中的字做比對,如此便能減少須比對的次數,因而加快辨認速度。
本論文針對上述三個主題提出解決方案。首先利用run-length-coding技術產生輸入字的骨架。利用各種run的彼此關係,可以產生一個不含交叉點的骨架,這種特殊的骨架,可避免一般使用細線化(thinning)的方式產生的骨架,在叉點形成的變形,因而有利接下來的筆劃抽取工作。
其次我們提出一個階層式的大分類方法。首先,依據中文字的外形分成十大類,然後再對每類字抽取其中的”部首”(radical)。對每個部首分析其四種對稱性,因而可進一步的再加以細分類,因此可有效地降低每類所含的字數。
最後我們以逐步增加”筆劃窗”(stroke window)的方式,將輸入字與資料庫中的字做比對。首先,將抽取出的筆劃按水平、垂直、45度角及135度角做分類,然後再依上述次序重排筆劃次序,此重排後的筆劃次序仍保留原次序的筆劃幾何關係。比對之前,先找出同類筆劃之間的關係,包括兩筆劃之間的相對距離、兩筆劃之間的角度以及兩筆劃之間的長度比率。比對時乃以計算筆劃窗內筆劃間的相似度為判斷標準,若高於所訂之值,則逐步增加筆劃至筆劃窗,然後重覆比對直到得到結果為止(比對成功或失敗)。
實驗結果顯示我們所提的筆劃抽取方法對雜訊有較高的忍受力及可靠度,大分類方法可有效地降低每類字數,所提的辨認方法亦為可行且有效。
摘要(英) There are two kinds of off-line Chinese character recognition systems: one is based on statistic features, and the other is based on structure features. In this dissertation, we focus on the corresponding subjects of the structure-feature based off-line Chinese character recognition system.
A structure-feature based Chinese character recognition system is usually composed of four main modules: preprocessing, stroke extraction, coarse classification and recognition. In the preprocessing module, the scanned image is denoised and skeletonized to facilitate the task of stroke extraction. In this stage, we propose a novel run-length-based skeletonization approach that is more tolerant to noise. The generated skeleton includes no fork point. The special forkless skeleton facilitates and simplifies the task of stroke extraction and makes the result of stroke extraction more reliable.
Some structure features can be found for each stroke after the strokes embedded in the character having been extracted, including the end points, the center point, the orientation and the length of the stroke. Further more, some relationships between two strokes can also be found, including the fork points, the distance, the orientation difference, and the length ratio between the two strokes. These extracted features will be utilized in the following steps of recognizing characters.
Since Chinese character contains a huge number of characters, it is inefficient to match input character with all the characters in database. Therefore, to preclassify all the characters is necessary. In this dissertation, we also propose an effective preclassification scheme to divide the whole character set into subclasses with each subclass owning fewer characters. The classifier contains two layers: the first layer classifies Chinese characters into ten subclasses according to the pattern of the Chinese characters. In this layer, radicals embedded in the character are also extracted. The second layer further divides the ten subclasses by analyzing four symmetry features in the extracted radical.
Finally, an off-line Chinese character recognition methodology is proposed. The extracted stroked are rearranged and formed a 1-D stroke string. In the stroke string, strokes with the same type gather together. The reordered stroke string facilitates the building of intra-character relationships between strokes. While matching input character with characters in database, the difference of the intra-character relationships between the two characters are assessed. The output is the candidate characters being sorted descendingly according to the corresponding matching score.
Experimental results reveal that the proposed stroke extraction method has high tolerance with noise as well as more reliable extraction results; whereas, the proposed preclassifier for Chinese characters effectively reduces the members in each subclass. Experimental results also reveal that the proposed recognition scheme is feasible.
關鍵字(中) ★ 筆劃次序重排
★ 字串比對
★ 對稱性分析
★ 大分類
★ 筆劃抽取
★ 中文字辨認
★ 筆劃窗
★ 光學辨認系統
關鍵字(英) ★ attributed string matching
★ symmetry test
★ coarse classification
★ stroke extraction
★ Chinese character recognition
★ rearrangement of stroke sequence
★ stroke window
★ OCCR
論文目次 封面
摘要
內文一
內文二
ABSTRACT
CONTENTS
List of Figures
List of Tables
CHAPTER 1 INTRODUCTION
CHAPTER 2 SKELETIONIZATION AND STROKE EXTRACTION
CHAPTER 3 FEATURE EXTRACTION AND REARRANGEMENT OF STROKE SEQUENCE
CHAPTER 4 COARSE CLASSIFICATION
CHAPTER 5 RECOGNITION OF CHINESE CHARACTERS
CHAPTER 6 THE COMPLETE OCCR SYSTEM AND EXPERIMENTAL RESULT
CHAPTER 7 CONCLUSIONS AND FUTURE WORKS
REFERENCES
APPENDIX
參考文獻 [1] K. Sakai, S. Hirai and T. Kawada, “An optical Chinese character reader,” Proc. ICPR 00, pp. 122-126, 1976.
[2] J. K. Lin, B. S. Jeng, et al., “Recognition of Printed Chinese Characters Utilizing Two-stage Classification With Mesh and Peripheral Features,” Proceedings of Telecommunications Symposium, 7B-1, 1987, pp. 533-537.
[3] Y. L. Wu, T. M. Wu and B. S. Jeng, “Optical Chinese character recognition using a projection profile and the Fourier transformation,” TL Technique J., Vol. 20, pp. 137-145, 1990.
[4] Y. Xia, Z. Wu and C. Sun, “A new classification method on optical recognition of restricted handwritten Chinese characters,” Communications COLIPS, Vol. 11, pp. 44-50, 1991.
[5] L. T. Tu, Y. S. Lin, C. P. Yeh, I. S. Shyu, J. L. Wang, K. H. Joe, and W. W. Lin, “Recognition of handwritten Chinese characters by feature matching,” Proceedings of 1991 International Conference on Computer Processing of Chinese and Oriental Languages, pp. 154-157, 1991.
[6] H. Lu and P. Yang, “A preclassification method for Chinese character recognition based on peripheral stroke structure,” Communications COLIPS, Vol. 12, pp. 73-79, 1992.
[7] H, D. Chang and J. F. Wang, “Preclassification for handwritten Chinese character recognition by a peripheral shape coding method,” Pattern Recognition, Vol. 26, pp. 711-719, 1993.
[8] Y. H. Tseng, C. C. Kuo and H. J. Lee, “Speeding up Chinese character recognition in an automatic document reading system,” Pattern Recognition, Vol. 31, pp. 1601-1612, 1998.
[9] R. I. Oka, “Handwritten Chinese-Japanese characters recognition by using cellular feature,” Proc. 6th Int. Joint Conf. on Pattern Recognition, pp. 783-785, 1982.
[10] T. F. Li and S. S. Yu, “Handprinted Chinese character recognition using the probability distribution feature,” Int. J. Pattern Recogn. Artif. Intell., Vol. 8, No. 5, pp. 1241-1258, 1994.
[11] D. Deng, K.P. Chan and Y. Yu, “Handwritten Chinese character recognition using spatial Gabor filters and self-organizing feature maps,” Proceedings of ICIP’94, pp. 940-944, 1994.
[12] C. H. Tung and H. J. Lee, “Increasing character recognition accuracy by detection and correction of erroneously identified characters,” Pattern Recognition, Vol. 27, No. 9, pp. 1259-1266, 1994.
[13] C. H. Tung, H. J. Lee and J. Y. Tsai, “Multistage pre-candidate selection in handwritten Chinese character recognition system,” Pattern Recognition, Vol. 27, pp. 1093-1102, 1994.
[14] Y. Kimura, “Distorted handwritten Kanji character pattern recognition by a learning algorithm minimizing output variation,” Proc. of IJCNN’91, pp. I-103-106, 1991.
[15] T. Shioyama and J. Hamanaka, “Recognition algorithm for handprinted Chinese characters by 2D-FFT,” Proceedings of International Conference on Pattern Recognition‘96, pp. 225-229, 1996.
[16] L. Y. Tseng and T. H. Huang, “Recognition of hand-printed Chinese characters based on backpropagation neural network,” Proceedings of 1991 International Conference on Computer Processing of Chinese and Oriental Language, pp. 86-91, 1991.
[17] H. D. Chang, J. F. Wang and S. C. Kuo, “A Bayesian neural network for separating similar complex handwritten Chinese characters,” Pattern Recognition Letters, Vol. 15, pp. 403-408, 1994.
[18] Y. S. Huang, “An optimized prototype construction algorithm for character recognition,” WITA’96.
[19] R. D. Romero, D. S. Touretzky, and R. H. Thibadeau, “Optical Chinese Character Recognition Using Probabilistic Neural Networks,” Pattern Recognition, Vol.30, 1279-1292, 1997.
[20] Tao Li, Yuan y. Tang and L. Y. Fang, “A Structure-Parameter-Adaptive (SPA) neural tree for the recognition of large character set,” Pattern Recognition, Vol. 28, No. 3, pp. 315-329, 1995.
[21] D. C. Tseng, H. P. Chiu and J. H. Cheng, “Invariant handwritten Chinese character recognition using fuzzy ring data,” Image and Vision Computing, Vol. 14, pp. 647-657, 1996.
[22] H. P. Chiu and D. C. Tseng, “Invariant handwritten Chinese character recognition using fuzzy min-max neural networks,” Pattern Recognition Letters, Vol. 18, pp.481-491, 1997.
[23] A. Sato and K. Yamada, “Generalized learning vector quantization,” Advances in Neural Information Processing 8, Proceedings of the 1995 Conference, pp. 423-429, MIT Press, Cambridge, MA, USA, 1996.
[24] M. K. Tsay and K. H. Shyu, “Feature transformation with Generalized Learning Vector Quantization for hand-written Chinese character,” IEICE Trans. INF. & SYST., Vol.E82-D, No. 3, 1999.
[25] H. Ogawa and K. Taniguchi, “Thinning and stroke segmentation for handwritten Chinese character recognition,” Pattern Recognition, Vol. 15, No. 4, pp.299-308, 1982.
[26] T. Y. Zhang, C. Y. Suen, “A fast parallel algorithm for thinning digital patterns,” Comm. ACM, Vol.27, pp.236-239, 1984.
[27] Y. K. Chu, C.Y. Suen, “An alternative smoothing and stripping algorithm for thinning digital binary patterns,” Signal Processing, No. 11, pp.207-222, 1986.
[28] W. Wu, C. Wang, “A fast thinning algorithm implemented on a sequential computer,” IEEE Trans. Syst. Man Cybern. Vol.17, No.5, pp.847-851, 1987.
[29] Y, S Chen, W. H. Hsu, “A modified fast parallel algorithm for thinning digital pattern,” Pattern Recognition Letters, No. 7, pp.99-106, 1988.
[30] P.S.P. Wang, Y. Y. Zhang, “A fast and flexible thinning algorithm,” IEEE Trans. Comput., Vol.38, pp.741-745, 1989.
[31] B. Li, C. Y. Suen,“A knowedge-based thinning algorithm,” Pattern Recognition, Vol. 24, NO. 12, pp.1211-1221, 1991.
[32] L. Lam, S. W. Lee and C. Y. Suen, “Thinning methodologies-a comprehensive survey,” IEEE Trans. PMAI, Vol. 14, No. 9, pp.869-885, 1992.
[33] G. Hu, Z. Li, “An X-crossing preserving skeletonization algorithm,” Thinning Methodologies for Pattern Recognition, Eds. Suen, C.Y. and Wang, P.S.P., World Scientific Publishing, 1994.
[34] Y. Y. Zhang and P.S.P. Wang, “A new parallel thinning methodology,” Int. Journal of pattern recognition and Artificial Intelligence Vol. 8 No. 5, 999-1011, 1994.
[35] F. Y. Shih and W. T. Wong, “Fully parallel thinning with tolerance to boundary noise,” Pattern Recognition, pp. 1677-1695, 1994.
[36] J. Y. Lin and Z. Chen, “A Chinese-character thinning algorithm base on global feature and contour information,” Pattern Recognition 28, 493-512, 1995.
[37] H. P. Chiu, D. C. Tseng, “A feature-preserved thinning algorithm for handwritten Chinese characters,” Signal Processing, Vol.58, pp.203-214, 1997.
[38] C. Lee, B. Wu, “A Chinese-character-stroke-extraction algorithm based on countour information,” Pattern Recognition, Vol.31, No.6, pp.651-663, 1998.
[39] K. C. Fan, D. Chen and M. G. Wen, “Skeletonization of binary image with nonuniform width via block decomposition and countor vector matching,” Pattern Recognition, Vol. 31, No. 7, pp. 823-838, 1998.
[40] D. X. Zhong, H. Yan, “Pattern skeletonization using run-length-wise processing for intersection distortion problem,” Pattern Recognition Letters, Vol.20, pp.833-846, 1999.
[41] F. Y. Shih and C. C. Pu, A Skeletonization algorithm by maxima tracking on Euclidean distance transform, Pattern Recognition 28, 331-341(1995).
[42] C. W. Liao and J. S. Huang, “Stroke segmentation by Bernstein-Bezier curve fitting,” Pattern Recognition, Vol. 23, No. 5, pp. 475-484, 1990.
[43] W. H. Hsu, F. H. Cheng, “Recognition of Chinese characters by structure analysis of strokes,” Computer Processing of Chinese and Oriental Languages, Vol. 2, No. 2, pp. 101-112, 1985.
[44] H. M. Lee and C. W. Huang, “Fuzzy feature extraction on handwritten Chinese characters,” Proceedings of the Third IEEE Conference on Fuzzy System, pp. 1809-1814, 1994.
[45] H. D. Chang and J. F. Wang, “A robust stroke extraction method for handwritten Chinese characters,” Int. J. Pattern Recognition and Art. Intell., Vol. 8, No. 5, pp. 1223-1239, 1994.
[46] J. R. Lin and C. F. Chen, “Stroke extraction for Chinese character using a trend-followed transcribing technique,” Pattern Recognition 29, 1789-1805, 1996.
[47] L. Y. Tseng and C. T. Chung, “An efficient knowledge-base stroke extraction method for multi-font Chinese Character,” Pattern Recognition 25, 1445-1458, 1992.
[48] Y. S. Chen, “Segmentation and association among lines and junctions for a line image,” Pattern Recognition 27, 1135-1157, 1994.
[49] N. Babaguchi, T. Aibra, H. Sanada and Y. Tezuka, “Identification and extraction of radical from handprinted Kanji character by segment correspondence method,” Trans. IECE Japan, pp. 83-59, 1983.
[50] N. Tanaka, H. Aota, M. Shiono, H. Sanada, and Y. Tezuka, “A method of subpattern extraction from handprinted Kanji characters,” Trans. IECE Japan, pp. 83-26, 1983.
[51] R. H. Cheng, C. W. Lee and Z. Chen, “Preclassification of handwritten Chinese characters based on basic stroke substructures,” Pattern Recognition Letters, vol. 16, pp. 1023-1032, 1995.
[52] T. Z. Lin and K. C. Fan, “Coarse classification of on-line Chinese Characters via structure feature-based method,” Pattern Recognition, Vol. 27, pp. 1365-1377, 1994.
[53] C. C. Han, Y. L. Tseng, K. C. Fan and A. B. Wang, “Coarse classification of Chinese characters via stroke clustering method,” Pattern Recognition Letters, Vol. 16, pp. 1079-1089, 1995.
[54] A. B. Wang, K. C. Fan and W. H. Wu, “Recursive hierarchical radical extraction for handwritten Chinese characters,” Pattern Recognition, vol 30, pp. 1213-1227, 1997.
[55] A. B. Wang, Kuo-Chin Fan and J. S. Huang, “Recognition of handwritten Chinese Character by modified relaxation methods,” Image and Vision Computing Vol. 12 no. 8, 509-522, 1994.
[56] K. Yamamoto and A. Rosenfeld, “Recognition of handprinted KANJI characters by a relaxation method,” Proc. 6th Int. Joint Conf. on Pattern Recognition, pp. 395-398, 1982.
[57] L. H. Chen and J. R. Lieh, “Handwritten character recognition using a 2-layer random graph model by relaxation matching,” Pattern Recognition, Vol. 23, No. 11, pp. 1189-1205, 1990.
[58] F. H. Cheng, W. H. Hsu and M. C. Kuo, “Recognition of Handprinted Chinese Characters Via Stroke Relaxation,” Pattern Recognition, Vol. 26, 579-593, 1993.
[59] F. H. Cheng, “Multi-stroke relaxation matching method for handwritten Chinese character recognition,” Pattern Recognition, Vol. 31, No. 4, pp. 401-410, 1998.
[60] K. P. Chan and Y. S. Cheung, “Fuzzy-attribute graph with application to Chinese character recognition,” IEEE Trans. On System, Man, and Cybernetics, Vol. 22, No. 1, pp. 153-160, 1992.
[61] A. B. Wang, K. C. Fan and W. H. Wu, “A recursive hierarchical scheme for radical extraction of handwritten Chinese characters,” SSPR International Workshop on Structural and Syntactic Pattern Recognition, Rep. Of China, 1996.
[62] R. H. Cheng, C. W. Lee and Z. Chen, “Recognition of radicals in handwritten Chinese characters by means of problem reduction and knowledge guidance,” Int. J. Pattern Recogn. Artif. Intell., Vol. 10, No. 6, pp. 657-677, 1996.
[63] K. W. Gan and K. T. Lua, “Chinese character classification using an adaptive resonance network,” Pattern Recognition, Vol. 25, No. 8, pp. 877-882, 1992.
[64] H. J. Lee and B. Chen, “Recognition of Handwritten Chinese Characters Via Short Line Segments,” Pattern Recognition, Vol. 25, 543-552, 1992.
[65] G. L. Cash and M. Hatamian, “Optical Character Recognition by The Method of Moments,“ Comput. Vision Graphics Image Processing, Vol. 39, 291-310, 1987.
[66] J. S. Huang and M. L. Chung, “Separating Similar Complex Chinese Characters by Walsh Transform,” Pattern Recognition, Vol. 20, 425-528, 1987.
[67] F. H. Cheng, W. H. Hsu, and M. Y. Chen, “Recognition of Handwritten Chinese Characters by Modified Hough transform techniques,” IEEE Trans. Patt. Anal. Machine Intell., Vol. 11, 429-439, 1989.
[68] W. H. Tsai and S. S. Yu, “Attributed String Matching with Merging for Shape Recognition,” IEEE Trans. PAMI, Vol. PAMI-7, No. 4, 1985.
[69] J. Mantas, “An overview of character recognition methodologies,” Pattern Recognition, Vol. 19, No. 6, pp. 425-430, 1986.
[70] G. Nagy, “Chinese character recognition: a twenty-five-year retrospective,” Proc. ICPR, pp. 163-167, 1988.
[71] V. K. Govindan and A. P. Shivaprasad, "Character recognition - A review", Pattern Recognition Vol. 23, No. 7, pp.671-683, 1990.
[72] S. Impedovo, L. Ottaviano, and S. Occhinegro, “Optical character recognition - a survey,” International Journal of Pattern Recognition and Artificial Intelligence, Vol. 5, No. 1ž, pp. 1-24, 1991.
[73] F. H. Cheng and W. H. Hsu, “Research on Chinese OCR in Taiwan,” International Journal of Pattern Recognition and Artificial Intelligence, Vol. 5, No. 1ž, pp. 139-164, 1991.
[74] B. S. Jeng, “A Study on Optical Chinese Character Recognition,” TL Technical Journal, Vol. 20, March, 1990.
[75] B. S. Jeng, “A study on optical Chinese character recognition,” Ph.D. dissertation, Institute of Optical Science, National Central University, Taiwan, R.O.C. 1991.
[76] S. Mori, C. Y. Suen, and K. Yamamoto, "Historical review of OCR research and development", Proc. IEEE, Vol. 80, No. 7, pp.1029-1058, 1992.
[77] T. H. Hildebrandt and W. Liu, “Optical recognition of handwritten Chinese characters: advances since 1980,” Pattern Recognition, Vol. 26, No. 2, pp. 205-225, 1993.
[78] H. J. Lee, “Chinese Character Recognition in Taiwan,” Chap. 1, Handbook on Optical Character Recognition and Document Image Analysis, Eds. P. S. P. Wang and H. Bunke, World Science Publishing Company, 1996.
[79] A. B. Wang, “Radical-based handwritten Chinese character recognition by hierarchical matching,” Ph.D. dissertation, Institute of Computer Science and Information Engineering, National Central University, Taiwan, R.O.C. 1996.
指導教授 范國清(Kuo-Chin Fan) 審核日期 2000-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明