博碩士論文 84246001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.208.159.25
姓名 王博(Bob Wang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 鈦酸鋇晶體非均向性自繞射之研究及其在光資訊處理之應用
(study of anisotropic self-diffraction in BaTiO3 and its applications to optical information processing)
相關論文
★ 奈米電漿子感測技術於生物分子之功能分析★ 表面結構擴散片之設計、製作與應用
★ CCD 量測儀器之研究與探討★ 多光束繞射光學元件應用在DVD光學讀取頭之設計
★ 高位移敏感度之全像多工光學儲存之研究★ 利用亂相編碼與體積全像之全光學式光纖感測系統
★ 體積光柵應用於微物3D掃描之研究★ 具有偏極及光強分佈之孔徑的繞射極限的研究
★ 三維亂相編碼之體積全像及其應用★ 透鏡像差的量測與MTF的驗證
★ 二位元隨機編碼之全像光學鎖之研究★ 亂相編碼於體積全像之全光學分佈式光纖感測系統之研究
★ 自發式相位共軛鏡之相位穩定與應用於自由空間光通訊之研究★ 體積全像空間濾波器應用於物體 三度空間微米級位移之量測
★ 發光二極體導光機構之研究★ 單模光纖雙向收發器光學系統之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在理論分析方面,我們對其在布拉格不匹配條件下的耦合方程式求解。首先利用弱耦合條件所作的某些近似來簡化方程式,再以此簡化後之方程式來求出一近似解,此近似解與Kogalnik’s formula 非常相似;利用此近似解所求得的相位關係代入完整耦合方程式中求出一通用解,此一通用解可以準確地近似至弱耦合條件下的近似解以及布拉格匹配條件下的通解。在實驗驗證方面,利用鈦酸鋇晶體非均向性自繞射所得到的結果與此準通用解的預測相當吻合。
在應用方面,則包含了四種利用鈦酸鋇晶體非均向性自繞射在光資訊處理的應用:一﹑光折變非同調─同調光學轉換器,利用鈦酸鋇晶體非均向性自繞射的非同調─同調光學轉換器具有高繞射效率的特性,因此具有減少晶體厚度來提升解析度的極大潛力,我們利用厚度1.2 mm的晶體得到40 lp/mm的解析度,繞射效率為51 %。二﹑中心對稱濾波器,由於非均向性自繞射的相位關係具有自卷積(auto-convolution)的特性,因此在中心對稱濾波器的應用方面具有不需要參考物的自動辨認特性,此外還具有大小不變(scale-invariant)的特性。三﹑剪影(shearing)干涉儀,此干涉儀則是利用鈦酸鋇晶體的即時全像特性,以雙重曝光的技巧來達成剪影干涉的目的,我們利用此剪影干涉儀來測量透鏡的等效焦距,結果與理論吻合。四﹑鈦酸鋇晶體折射率隨溫度變化的精密量測,利用非均向性自繞射布拉格條件的改變來測量鈦酸鋇晶體的非常態折射率(extraordinary refractive index)隨溫度的變化具有以下優點:量測精確度與晶體厚度無關,對於環境穩定性的要求較低,以及架構簡單。此架構也可以作為一溫度感測器。
摘要(英) In theoretical analysis, we solved the coupled equations under Bragg mismatching. We simplified the coupled equations under the weak coupling conditions and obtained an approximate solution. This approximate solution is similar to Kogalnik’s formula. Substituting the phase relation obtained from the approximate solution, we obtained a general solution. The general solution may be properly reduced to the approximate solution for weak coupling conditions and to the general solution under Bragg matching. In the experimental demonstration, the experimental results for ASD in BaTiO3 were found to fit the theory well.
For practical applications, four kinds of optical information processing based on ASD in BaTiO3 are proposed. (1) Incoherent-to-coherent optical converter (PICOC). PICOCs based on ASD in BaTiO3 have great potential for increasing resolution by reducing crystal thickness, owing to the high diffraction efficiency of ASD in BaTiO3. The resolution and diffraction efficiency for a thin crystal of 1.2 mm thickness are 40 lp/mm and 51 %, respectively. (2) Central-symmetry filter. According to the autoconvolution character in the phase relation of ASD, a central-symmetry filter possesses the character of auto-recognition and no reference object is required. In additional, scale-invariant filtering is performed. (3) Shearing interferometer. A shearing interferometer is implemented based on the double exposure technique due to the real-time hologram character of BaTiO3. We used this shearing interferometer to measure the effective focal length of a lens, and the measured results coincided with the theoretical prediction. (4) The precise measurement of the temperature-dependent refractive index change in BaTiO3. The measurement of temperature-dependent extraordinary refractive index change in BaTiO3 with the variation of the Bragg condition of ASD has the following advantages: the measurement precision is independent of the crystal thickness, the measurement can be implemented under an inferior condition, and the setup is simple. This algorithm can be applied to thermo-sensing.
關鍵字(中) ★ 鈦酸鋇晶體
★ 均向性繞射
★ 資訊處理
關鍵字(英) ★ BaTiO3 crystal
★ anisotropic diffraction
★ optical
論文目次 封面
Abstract
Figure caption
1. Introduction
1.1 Holohraphy
1.2 Volume Holograms
1.2.1 Coupled Mode Theory
1.3 Overview of the Thesis
References
2 Photorefractive Effect
2.1 Band Transport Model
2.2 Diffraction in Photorefractive Crystals
2.2.1 BaTiO3
2.2.2 Isotropic Diffraction
2.2.3 Anisotropic Diffraction
References
3 Anisotropic Self-diffraction (ASD) in BaTiO3
3.1 ASD under Bragg Matching
3.2 ASD under Bragg Mismatching
3.2.1 Weak coupling Approximation
3.2.2 Quasi-general Solutions
3.3 Experimental Demonstration
3.3.1 Quantity of Phase Mismatching
3.3.2 Experimental Results
References
4 Photorefractive Incoherent-to-coherent Optical Converter (PICOC)
4.1 PICOC
4.1.1 Diffraction Type PICOC
4.1.2 Fanning Type PICOC
4.2 Principle
4.3 Contrast
4.4 Response Time
4.5 Resolution Limitations
References
5 Symmetry Filter
5.1 Pattern Recognition
5.1.1 Four-wave Mixing
5.2 Principle
5.2.1 Computer Simulation
5.3 Experiment
5.3.1 Response Time
5.3.2 Scale-invariant Filtering
5.4 Shift Tolerance
References
6 Shearing Interferometer
6.1 Shearng Interferometer
6.2 Double Exposure
6.2.1 Shearing Interference
6.3 Measruement of Effective Focal Length
6.4 Experiment
6.4.1 Response Time
6.4.2 Experimental Results
References
7 Precise Measurement of Refractive Index Change in BaTiO3
7.1 Temperature-dependent refractive Index Change in BatiO3
7.1.1 Mach-Zehnder Interferometer
7.2 Measurement Principles
7.2.1 Resolution
7.3 Error Tolerance
7.3.1 Alignment Error
7.3.2 Refractive Index Error
7.4 Experimental Results
References
8 Summary
Appendix A
Appendix B
Appendix C
Appendix D
參考文獻 1. F. T. S. Yu and S. Jutamulia, Optical signal processing, computing, and neural networks, John Wiley, New York (1992).
2. J. -P. Huignard and P. Gunter, Photorefractive Materials and Their Applications: I. Fundamental Phenomena, Springer-Verlag, New York (1988).
3. J. -P. Huignard and P. Gunter, Photorefractive Materials and Their Applications: II. Applications, Springer-Verlag, New York (1989).
4. R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical holography, (1983).
5. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Bullman, J. J. Levinstein, and K. Nassau, “Optical-induced refractive index inhomogeneity in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72 (1966).
6. C. C. Sun, M. W. Chang, and K. Y. Hsu, “Matrix-matrix multiplication by use of anisotropic self-diffraction in BaTiO3,” Appl. Opt. 33, 4501-4507 (1994).
7. C. C. Sun, M. W. Chang, and K. Y. Hsu, “Optical information processing by using anisotropic diffraction In BaTiO3,” Int. J. Optoelectronics 11, 413-423 (1997).
8. C. C. Sun, B. Wang, and J. Y. Chang, “Photorefractive incoherent-to-coherent optical converter based on anisotropic self-diffraction in BaTiO3,” Appl. Opt. 37, 8247-8253 (1998).
9. C. C. Sun, B. Wang, W. C. Su, A. E. T. Chiou, and J. Y. Chang, “Optical filtering by use of anisotropic self-diffraction in BaTiO3,” Appl. Opt. 38, 3720-3725 (1999).
10. Ching-Cherng Sun and Bor Wang, “Optical information processing and computing with anisotropic diffraction in BaTiO3,” (Invited paper) Proc. SPIE 3801, 169-179 (1999).
11. D. Gabor, “A new microscopic principle,” Nature 161, 777 (1948).
12. D. Gabor, “Microscopy by reconstructed wavefronts,” Proc. Roy. Soc. A197, 454 (1949).
13. D. Gabor, “Microscopy by reconstructed wavefronts: II,” Proc. Roy. Soc. B64, 449 (1951).
14. E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Amer. 52, 1123 (1962).
15. E. N. Leith and J. Upatnieks, “Wavefront reconstruction with continuous-tone objects,” J. Opt. Soc. Amer. 53, 1377 (1963).
16. E. N. Leith and J. Upatnieks, “Wavefront reconstruction with diffuced illumination and three-dimensional objects,” J. Opt. Soc. Amer. 54, 1295 (1964).
17. N. V. Kukhtarev, V. B. Makrov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystal. I. Steady state,” Ferroelectrics 22, 949 (1979).
18. P. Yeh, Introduction to photorefractive nonlinear optics, John Wiley, New York (1993).
19. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).
指導教授 孫慶成(Ching-cherng Sun) 審核日期 2000-6-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明