博碩士論文 84341011 詳細資訊


姓名 吳孝忠( Hsiao-chung Wu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 機車觸媒轉化器處理效能提升之研究
(Improvement of exhaust emission treatment on motorcycle catalytic converter)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    至系統瀏覽論文 ( 永不開放)
摘要(中) 台灣有超過1000萬輛的機車,因此機車所排放的廢氣已變成一嚴重的環保問題。為了降低機車的廢氣排放,由於機車對於空燃比控制較不精準,操作條件也不穩定,往往由於劇烈操作或間斷性迴油造成大量未燃燒油氣排入排器管中,而在觸媒表面反應,由於大量放熱所產生的高溫有可能達到1100 oC以上,會對觸媒轉化器造成極大傷害。因此,提昇觸媒的高溫熱穩定性與低溫起燃特性,是未來機車觸媒轉化器研究發展的重點。
本論文首先利用微濕含浸法將熱安定添加劑加入洗覆層的主要成份γ-A12O3中,經1100 ℃,4小時處理後,由 BET比表面積與XRD繞射圖譜結果發現添加1~5 wt.%的La與5~10 wt.%的Ba對於γ-A12O3晶相的熱穩定性效果最佳。且添加熱穩定劑的Pt/γ- Al2O3 與 Pd/γ- Al2O3觸媒具有低起燃溫度及較佳的CO、C3H6轉化效率,而Pd/γ- Al2O3觸媒對C3H6的轉化率與熱穩定性較Pt/γ- Al2O3觸媒為佳。
其次針對不同製備方法(溶膠-凝膠法、共沉澱法、物理混合及含浸法)合成CeO2-Al2O3擔體,探討如何增進γ- Al2O3中添加劑二氧化鈰的熱穩定性。結果顯示以溶膠凝膠法合成之CeO2-Al2O3擔體,較其他合成方法合成之CeO2-Al2O3擔體,具有較高的表面積,其二氧化鈰的結晶顆粒最小,負載於其上的Pd分散度也最佳。由TPR結果顯示以溶膠凝膠法合成之Pd/CeO2-Al2O3觸媒有較低溫的還原峰,且於缺氧反應條件下,以溶膠凝膠法製備之觸媒對一氧化碳及碳氫化合物的氧化催化活性最好。但Pd/CeO2-Al2O3觸媒經950℃,3小時的高溫處理後,由於擔體燒結與貴重金屬分散變差,觸媒的活性變差。為了改善觸媒的熱劣化情形,以溶膠凝膠法合成的Pd/CeO2-BaO-Al2O3觸媒,其對一氧化碳及碳氫化合物的催化反應效果最好。
本文又嘗試以酸及鹼含浸處理氧化鋁及氧化鋯作觸媒擔體,再製成Pt及Pd觸媒,以瞭解酸鹼效應對於觸媒催化反應的影響。結果發現將活性金屬支撐於含浸NaOH的鹼性擔體觸媒上,對於當量點的CO及丙烯氧化反應有助於起燃溫度的降低,而含浸H2SO4的酸性擔體觸媒對CO及丙烯氧化反應則有抑制反應的效應。另外,將活性金屬支撐於含浸H2SO4的酸性擔體觸媒上,對C3H8氧化反應可使觸媒的起燃溫度降低,而含浸NaOH的鹼性擔體觸媒則有抑制C3H8氧化反應的效應。
由於鈣鈦礦型氧化物(Perovskite oxides,ABO3)結構穩定且耐熱性佳,因此本文探討La1-xSrxCo1-yMnyO3與含有Pd的 LaCo0.9-xPdxMn0.1O3鈣鈦礦型氧化物。結果顯示La1-xSrxCo1-yMnyO3觸媒對CO與C3H6的氧化反應較LaCoO3、LaMnO3觸媒為佳。EXAFS的分析結果發現,分別以鍶及錳取代部分之鑭及鈷的LaxSr1-xCoyMn1-yO3 氧化物,可以增加鈷周圍之氧空缺,提昇鈣鈦礦型氧化物對於CO及丙烯的氧化活性。且將La、Co、Mn、Pd鹽依比例同時含浸於γ- Al2O3中,組成為LaCo0.84Pd0.06Mn0.1O3 (LaCo0.84Pd0.06Mn0.1O3/Al2O3),以700℃?燒2小時。LaCo0.84Pd0.06Mn0.1O3/Al2O3觸媒較Pd/CeO2-Al2O3 及 Pt-Rh/CeO2-Al2O3觸媒反應性及熱穩定性佳。而由ECE-R47法規測試的結果顯示LaCo0.84Pd0.06Mn0.1O3/Al2O3觸媒對CO與HC的轉化率與商用的Pt-Rh/CeO2-Al2O3機車觸媒相當。
最後以台灣50 cc二行程與125 cc四行程機車為例,說明為了因應未來日益嚴格機車排氣法規,未來機車排氣污染控制系統必須包含二次空氣導入及雙觸媒轉化器。
摘要(英) There are more than ten millions motorcycles in Taiwan. Exhaust emissions from motorcycles became a serious environmental issue. A common characteristic of motorcycles is operating in oxygen deficient conditions. For two-stroke motorcycles, short-circuiting loss and incomplete combustion result in high hydrocarbon (HC) concentration in the exhaust emission. On the other hand, the temperature of the catalyst may exceed 1100 ℃ when CO and HC are oxidized. In order to comply with the more stringent emission regulation in the future, this research will focus on the improvement of the thermal stability and light-off temperature of the catalyst. There are five parts in the thesis.
In the first part, additives added by impregnation of γ- alumina support for improving the thermal stability is reported. BET surface area and XRD results reveal thatγ-Al2O3 exhibits improved thermal stability by adding 1-5 wt % La or 5-10 wt% Ba after aging at 1100 ℃ for 4 hours. The additives can also reduce the light-off temperature and enhance the conversion of CO and C3H6 for Pt/γ-Al2O3 and Pd/γ-Al2O3. Under oxygen deficient condition, the conversion of CO over Pt/γ-Al2O3 is higher than that of Pd/γ- Al2O3. While the conversion of C3H6 is higher over Pd/γ-Al2O3, and better thermal stability is reported for Pd/γ- Al2O3.
Improvements of thermal stability of cerium oxide additives in alumina (CeO2-Al2O3) prepared by different methods (impregnation, sol-gel, co-precipitation and physical mixing) are investigated in the second part. The results show that CeO2-Al2O3 prepared by sol-gel method exhibits the largest surface areas, highest Pd dispersion and smallest CeO2 crystalline size than other methods. TPR results also show that the reduction of Pd/CeO2-Al2O3 prepared by sol-gel method shift to lower temperature. In addition, Pd/ CeO2-Al2O3 prepared by sol-gel method exhibits higher activity for CO and C3H6 oxidation. However, the activity of Pd/ CeO2-Al2O3 was inevitably deactivated due to thermal aging at 900 ℃ for 3 hours. Improvement of thermal stability can be achieved by using CeO2-BaO- Al2O3 prepared by sol-gel method as the support for Pd. The catalyst also exhibits better catalytic activity for CO and HC oxidation.
The effects of acid and base treatment of alumina and zirconia support on the light-off temperature of supported Pt and Pd are investigated in the third part. Under stoichiometric conditions, the activities of CO and C3H6 oxidation over the catalysts on supports impregnated with NaOH solution are promoted. In contrast, the activities are suppressed for catalysts on supports impregnated with H2SO4 solution. On the other hand, the activities for C3H8 oxidation are promoted over catalysts on supports impregnated with H2SO4, and are suppressed over catalysts on supports impregnated with NaOH.
In the fourth part the activities and thermal stability of perovskite,
La1-xSrxCo1-yMnyO3, and Pd containing perovskite LaCo0.9-xPdxMn0.1O3 are reported. La1-xSrxCo1-yMnyO3 exhibits higher activity than LaCoO3 and LaMnO3 for CO and HC oxidation. EXAFS results reveal that oxygen vacancy around Co ion in LaCoO3 and LaMnO3 increased by Sr, Mn, Co partially substitutes La, Co, and Mn, respectively. The activity is related to oxygen vacancies. The activity of propylene oxidation was furthering promoted when LaCo0.9Mn0.1O3 containing a small amount of Pd. The best activity is observed for the composition of LaCo0.84Pd0.06Mn0.1O3. La, Co, Mn, Pd salts solution impregnated into alumina simultaneously and calcined at 700 ℃for 2 hours with the composition LaCo0.84Pd0.06Mn0.1O3 (LaCo0.84Pd0.06Mn0.1O3/Al2O3) exhibits higher activity and thermal stability than Pd/CeO2-Al2O3 and Pt-Rh/ CeO2-Al2O3. The test results of ECE-R47 driving cycle also reveals that HC and CO conversions on LaCo0.84Pd0.06Mn0.1O3/Al2O3 is close to those on Pt-Rh/CeO2-Al2O3, which is a typical composition of the commercial catalyst for motorcycles.
In the last part, potential emission control strategies are proposed for motorcycles. For 50 cc two-stroke motorcycles and 125 cc four-stroke motorcycles in Taiwan, the emission control system should include secondary air input and multi-type catalysts in order to comply with the stringent emission regulation in the future.
關鍵字(中) ★ 鈣鈦礦型氧化物
★ 酸鹼效應
★ Pd/γ- Al2O3觸媒
★ 廢氣排放
★ 溶膠-凝膠
★ 觸媒轉化器
關鍵字(英) ★ Pd/γ- Al2O3觸媒
★ exhaust emission
★ sol-gel
論文目次 摘要 …………………………………………………….…………….I
圖目錄 ………………………………………………….…………….XII
表目錄 ………………………………………………….…………….XVIII
第一章 緒論 …………………………………………….………….1
一、前言 …………………………………………….…………...1
二、汽、機車排放污染物 …………………………….………...4
三、觸媒轉化器 …………………………………………………5
3.1. 基層載體 …………………………………….………….6
3.2. 洗覆層 ………………………………………….……….8
3.3. 貴重金屬 ……………………………………….……….9
3.4. 促進劑 ………………………………………………….10
四、研究動機 ……………………………………………………16
第二章 實驗設備與方法 ……………………………………………18
一、藥品及氣體 …………………………………………………18
二、實驗 …………………………………………………………19
2.1. X-射線繞射分析(XRD) ………………………….……...19
2.2. 比表面積(BET)分析 …………………………….……...19
2.3. 氫氣的程溫脫附法(H2-TPD) ………………….……….19
2.4. 活性金屬分散度量測 …………………………….…….19
2.5. 指示劑測觸媒酸鹼性強度 ……………………….……21
2.6 X-ray吸收光譜 …………………………………..………22
2.7. 反應活性測試 ………………………………………….22
2.8. 實車法規測試 ………………………………….………27
第三章 氧化鋁洗覆層耐熱性研究 ……………………………….28
一、前言 …………………………………………………………28
二、實驗方法 ……………………………………………………29
三、結果與討論 …………………………………………………30
3.1. 載體表面積量測 ………………………………….…….30
3.2. 晶相結構分析 …………………………………….…….32
3.3. 熱穩定性添加劑對貴重金屬還原性的影響 ……….….35
3.3.1. 熱穩定性添加劑對鉑觸媒還原性的影響 …….…..35
3.3.2. 熱穩定性添加劑對鈀觸媒還原性的影響 ……..….36
3.4. 活性金屬表面積量測 ………………………………..…38
3.5. 反應活性測試 …………………………………………..40
3.5.1.熱穩定性添加劑對鉑觸媒於CO與丙烯氧化反應影響40
3.5.2.熱穩定性添加劑對鈀觸媒於CO與丙烯氧化反應影響42
四、結論……………………………………………………………43
第四章 觸媒擔體的組成及合成方法對於Pd觸媒活性影響….…….45
一、簡介 …………………………………………………………45
二、實驗方法 ……………………………………………………47
2.1. 觸媒製備 …………………………….………………….47
2.2. 觸媒活性促進劑添加方式 ……………………….…….48
三、結果與討論 ………………………………………….……...50
3.1. 製備方法對於Pd/CeO2/Al2O3觸媒特性之影響 ….…….50
3.1.1. 觸媒擔體比表面積比較 …………………….………50
3.1.2. 觸媒擔體之二氧化鈰結晶顆粒大小 ……….………52
3.1.3. 觸媒之Pd分散度比較 ……………………….………55
3.1.4. 程溫還原 (TPR) …………………………….………56
3.1.5. 製備方法對Pd/CeO2/Al2O3氧CO及HC活性的影響….59
3.1.6. 二氧化鈰含量對於Pd觸媒活性的影響 …….………67
3.2. 觸媒活性促進劑對於Pd觸媒活性的影響 …………….72
3.2.1. 添加劑對於擔體比表面積的影響 …………………72
3.2.2. 添加劑對於氧化鈰結晶顆粒大小的影響 …….……74
3.3.3. 添加劑對於觸媒Pd分散性的影響 …………….……76
3.3.4. 添加劑對於Pd氧化CO及丙烯活性之影響 …….…..76
四、結論 …………………………………………………….…...80
第五章 擔體酸鹼性對Pt及Pd觸媒氧化CO及HC活性的影響…..81
一、簡 介 …………………………………………….…………81
1.1. 固態酸鹼觸媒 ………………………………………….81
1.2. 酸鹼的來源 …………………………………………….81
1.3. 酸鹼性質的鑑定 ……………………………………….84
1.4. 擔體效應 ……………………………………………….84
1.5. 以硫酸改質擔體性質的影響 ………………………….85
1.6. 研究方向 ……………………………………………….85
二、實驗方法 …………………………………….……………..86
2.1. 觸煤的製備 ……………………………….……………86
2.2. 觸媒酸鹼性強度鑑定 …………………..………..…….86
三、結果與討論 ………………………………………………...86
3.1. 觸媒特性 ………………………………….……………86
3.2. Pt觸媒在酸鹼性擔體上對CO及C3H6氧化反應的影響 .88
3.3. 擔體酸鹼性對於Pt觸媒氧化C3H6及C3H8活性之影響 ..93
3.4. Pt與Pd觸媒對C3H6與C3H8氧化反應 …………………...94
四、結論 …………………………………………………………95
第六章 以鈣鈦礦型氧化物提升鈀觸媒之性能 ………………96
一、前言 …………………………………………………………97
二、實驗 …………………………………………………………97
2.1. Perovskite觸媒製備 …………………………………….97
2.2. 含貴重金屬觸媒之製備 …………………….………….97
2.3. ECE-R47測試程序用之目標車 ………………………..98
三、結果與討論 …………………………………….………….99
3.1. La1-xSrxCo1-yMnyO3之XAS分析 ……………………….99
3.2. La1-xSrxCo1-yMnyO3系列觸媒對於CO與C3H6反應活性的比較 ………………………………………….………….101
3.3. 以Pd取代Co對於LaCo0.9Mn0.1O3觸媒活性之影響 ….103
3.4. ?燒溫度對於LaCo0.84Pd0.06Mn0.1O3/Al2O3觸媒反應活性之影響 …………………………………………….…….104
3.5. LaCo0.84Pd0.06Mn0.1O3/Al2O3觸媒表面鑑定 …………….106
3.6. 觸媒載體對於Pd觸媒反應活性之影響 ………………111
3.7. 歐洲ECE-47法規測試 ………………………….……..114
四、結論 ………………………………………………….…….116
第七章 觸媒轉化器在50㏄二行程與125㏄四行程機車上的應用116
一、簡介 ……………………………………………….……….116
二、實驗 …………………………………………….………….117
2.1. 排氣系統 ………………………………………..………117
2.2. 模擬氣體測試 ………………………………….………109
2.3. 車體動力計耐久測試 …………………………….……120
2.4. 15,000公里實車路試 ………………………………...121
三、結果與討論 …………………………………………….…122
3.1. 二次空氣系統應用於二行程機車 ……………………122
3.2. 二次空氣對二行程機車ECE-R40測試結果的影響 ….124
3.3. 觸媒系統對二行程機車的影響 ……….……………...127
3.4. 加裝觸媒對四行程機車的影響 ………………………130
3.5. 觸媒耐久模擬相關性探討 ……………………………130
3.6. Pd觸媒在四行程機車上的應用 …………….………...132
四、結論 ……………………………………………………….133
第八章 結論 …………………………………………………………137
參考文獻 ……………………………………………………………..139
圖 目 錄
圖1-1各國機車排氣法規標準的比較 …………………….……..2
圖1-2觸媒轉化器裝配於排器管中的位置與二次空氣導入的位置示意圖…………………………………………………….…..3
圖1-3空燃比與CO、HC及NOx轉化率的關係,觸媒轉化率最佳區段(Operation window)為觸媒轉化率可維持80 %的轉化之空燃比。…………………………………………………….…..3
圖1-4蜂巢狀(Honeycomb)載體, 其中(A), (B), (C)為陶瓷載體; (D), (E)為金屬載體,機車多使用金屬載體,汽車多使用陶瓷載體。……………………………………………………... 7
圖1-5洗覆層的大表面積可有效分散活性金屬於載體表面……...9
圖1-6觸媒轉化器中活性衰退因素:(A)高溫致使貴金屬燒結、(B)高溫致使載體表面積降低、(C)汽油中的鉛、硫與機油中的磷對貴重金屬的毒化現象及(D)碳氫化合物燃燒不完全產生的積碳遮蔽作用………………………………………….….. 11
圖1-7Perovskite type結構:A ion 為稀土族與鹼土族離子;B ion 為過渡金屬離子……………………………………….……14
圖2-1氫氣程溫還原的裝置…………………………………….…..20
圖2-2CO化學吸附測試系統裝置圖.………………………….…...21
圖2-3活性測試裝置…………………………………………….…..23
圖2-4(a)ECE-R40市區行車型態,機車於暖車十公里並怠速40秒後,依據市區行車型態模式連續行駛四次,收集廢氣進行分析26
圖2-4(b)ECE-R47市區行車型態,機車於怠速40秒後,依據市區行車型態模式連續行駛八次,前四次行車型態為暖車,後四次行車型態收集廢氣進行分析…………………………..…….26
圖2-5ECE-R40 & ECE-R47 污染法規測試設備………………….27
圖3-1 (a)不同含量的鉑觸媒經1100 oC處理後之XRD圖譜,鉑晶相位置2θ為39.8o與46.3o (a) Pt含量0.5 wt.% (b) Pt含量1.0 wt.% (c) Pt含量2.0 wt.%……………………………..……………..33
圖3-1 (b)含浸5 wt.%的La, Ba, Ce之Pt 2 wt.%/Al2O3觸媒經1100 oC處理後之XRD圖譜 (a)Pt 2 wt.%/La2O3(5 wt.%)/Al2O3;(b)Pt 2 wt.%/BaO(5 wt.%)/Al2O3;(c)Pt 2 wt.%/CeO2(5 wt.%) /Al2O3;(d)Pt2 wt.%/Al2O3………..……….……………..….33
圖3-2 (a)不同含量鈀的觸媒經1100oC處理後之XRD圖譜,鈀晶相位置2θ為33.8o (a) Pd含量0.5 wt.% (b) Pd含量1.0 wt.% (c) Pd含量2.0 wt.%…………………………..………….…………...34
圖3-2 (b)含浸5wt.%的Ba, La, Ce之Pd 2wt.%/Al2O3觸媒經1100 oC處理後之XRD圖譜 (a) Pd 2 wt.%/Al2O3;(b) Pd 2 wt.%/BaO(5 wt.%)/Al2O3;(c) Pd 2 wt.%/La2O3(5 wt.%)/ Al2O3;(d) Pd 2 wt.%/CeO2(5 wt.%)/Al2O3………….34
圖3-3分別添加5 wt.% BaO, CeO2, La2O3的Pt2wt.%/Al2O3觸媒H2-TPR圖譜,其中(A)為新鮮態Pt觸媒H2-TPR圖譜 (B)為老化態Pt觸媒H2-TPR圖譜;(a)Pt 2 wt.% /Al2O3;(b) Pt 2 wt.%BaO 5 wt.%/Al2O3;(c) Pt 2 wt.%CeO2 5 wt.%/ Al2O3;(d)Pt 2 wt.%La2O3 5 wt.%/Al2O3……………..…..…36
圖3-4分別添加5 wt.% BaO, CeO2, La2O3的Pd2wt.%/Al2O3觸媒H2-TPR圖譜,其中(A)為新鮮態Pd觸媒H2-TPR圖譜(B)為老化態Pd觸媒H2-TPR圖譜;(a) Pd 2 wt.% /Al2O3;(b) Pd 2 wt.%BaO 5 wt.%/Al2O3;(c) Pd 2 wt.%CeO2 5 wt.%/ Al2O3 (d) Pd 2 wt.%La2O3 5 wt.%/Al2O3………………….…..37
圖4-1不同製備方法合成之觸媒擔體,於不同?燒溫度下的比表面積比較……………………………………………………...51
圖4-2 (a)不同製備方法合成Pd/5 wt.%CeO2/Al2O3觸媒的XRD圖譜;A: 溶膠凝膠法;B:含浸法;C:物理混合法;D:共沉澱.…..53
圖4-2 (b)不同?燒溫度下,溶膠凝膠法與含浸法製備Pd/5 wt.%CeO2/ Al2O3觸媒的XRD圖譜比較;A: 溶膠凝膠法(500 ℃);B: 溶膠凝膠法(950 ℃);C: 含浸法(500 ℃);D: 含浸法(950 ℃).53
圖4-3不同?燒溫度下,不同製備方法製備之觸媒CeO2結晶顆粒大小比較……………………………………………………...54
圖4-4不同?燒溫度下,鈀於不同製備方法觸媒表面上的分散度比較…………………………………………………………..55
圖4-5(a) CeO2、Pd/CeO2與Pd/Al2O3層溫還原圖譜圖比較;(b)不同CeO2含量(5或20 wt%),於溶膠凝膠法或含浸法製備觸媒的層溫還原圖譜圖比…………………………………...57
圖4-5不同製備方法合成之Pd/5 wt%CeO2/Al2O3觸媒的層溫還原圖譜圖比較:(c)?燒溫度為500 ℃;(d)?燒溫度為950 ℃..58
圖4-6Pd含浸於不同製備方法合成之CeO2/Al2O3擔體或CeO2、Al2O3(Sol-gel)上,於S=1或0.5時,對CO與丙烯氧化反應的比較;(a) Fresh, ?燒溫度500 ℃;(b)Aged, ?燒溫度950 ℃..60
圖4-7Pd含浸於溶膠凝膠法或含浸法製備CeO2含量為5及20 mole%之Pd/CeO2/ Al2O3觸媒,於S=1或0.5時,對CO與丙烯氧化反應的比較;(a) Fresh, ?燒溫度500 ℃;(b)Aged, ?燒溫度950 ℃…………………………………………….…68
圖4-8以溶膠凝膠法合成含有鋇&鈰或鋇&鈰擔體經不同處理後之XRD圖譜;A: Pd/CeO2/BaO-Al2O3(sol),?燒溫度500 ℃;B:Pd/CeO2/ BaO-Al2O3(sol),?燒溫度950 ℃; C: Pd/CeO2-BaO-Al2O3(sol),?燒溫度500 ℃; D: Pd/CeO2- BaO-Al2O3(so),?燒溫度950 ℃…………………………….75
圖5-1Bronsted acid and Lewis acid 結構….……………….………82
圖5-2氧化鋁之酸鹼結構……………………………….…………..82
圖5-3Pt/NaOH/ZrO2、Pt/ZrO2及Pt/H2SO4/ZrO2於S=1(化學計量點)反應條 件下,對於CO與丙烯氧化的反應曲線……………89
圖5-4Pt/NaOH/Al2O3、Pt/Al2O3及Pt/H2SO4/Al2O3於S=1反應條件對於CO與丙烯氧化的反應曲線………………………….……91
圖6-1Normalized Co K-edge XANES spectra of La1-xSrxCo1-yMnyO3 100
圖6-2Normalized Mn K-edge XANES spectra of La1-xSrxCo1-yMnyO3………………………………….………..100
圖6-3LaCo0.84Pd0.06Mn0.1O3與LaCo0.9Mn0.1O3觸媒CO與HC轉化率比較;●: LaCo0.84Pd0.06Mn0.1O3; ◆: LaCo0.9Mn0.1O3…………104
圖6-46-4 A: LaCo0.9Mn0.1O3 ;B: LaCo0.84Pd0.06Mn0.1O3;C: LaCo0.84Pd0.06Mn0.1O3/Al2O3之XRD圖譜;?燒溫度700℃…………………………………………………………..….105
圖6-5LaCo0.9Mn0.1O3、LaCo0.84Pd0.06Mn0.1O3、LaCo0.84Pd0.06Mn0.1O3/ Al2O3與Pd0.06/LaCo0.9Mn0.1O3/Al2O3觸媒之H2-TPR圖譜;A: LaCo0.9Mn0.1O3,B: LaCo0.84Pd0.06Mn0.1O3,C: LaCo0.84Pd0.06Mn0.1O3/Al2O3,D: Pd0.06/LaCo0.9Mn0.1O3/Al2O3107
圖6-6LaCo0.9Mn0.1O3、LaCo0.84Pd0.06Mn0.1O3與LaCo0.84Pd0.06Mn0.1O3/ Al2O3觸媒於Co, Mn與La的K-吸收邊緣之XANES圖譜…………………………………………108
圖7-1二行程排器管中加裝觸媒轉化器與二次空氣簡圖…….…..118
圖7-2四行程排器管中加裝觸媒轉化器與二次空氣簡圖…….…..119
圖7-3模擬機車排放廢氣的反應系統………………………….…..120
圖7-4高低溫耐久100小時測試的模式……………………….…..121
圖7-5二次空氣強制導入量對ECE-R40測試時CO與HC轉化率的影響…………………………………………………….…..122
圖7-6在各定速下不同導入位置(距引擎排氣口距離)與二次空氣流量的關係……………………………………………….…..123
圖7-7簧片閥與消音器導入口間距離,在各定速下,二次空氣流量變化…………………………………………………….…..123
圖7-8在ECE-R40 195秒的測試循環中,導入二次空氣及加裝觸媒對空燃比(A/F)的動態分析..……………………………..…..125
圖7-9在ECE-R40 195秒的測試循環中,導入二次空氣及加裝觸媒對氧的動態分析..…………………………………………….125
圖7-10在ECE-R40 195秒的測試循環中,導入二次空氣及加裝觸媒對CO的動態分析…………………………………………….126
圖7-11在ECE-R40 195秒的測試循環中,導入二次空氣及加裝觸媒對氧的動態分析………………………………………..…….126
圖7-12在二次空氣導入下,前觸媒及主觸媒在各定速下的CO與HC轉化率…………………………………………………..…….130
圖7-13加裝觸媒對二行程及四行程機車馬力的影響………..…….130
圖7-14100 hr耐久過程觸媒於ECE-R40測試時之CO與HC轉化率(二行程耐久車)……………………………………………….131
圖7-15100 hr耐久過程觸媒於ECE-R40測試時之CO與HC轉化率(二行程參考車)……………………………………….……....131
圖7-16實車15,000 km道路耐久測試………………………………..132
圖7-17一系列新鮮觸媒於不同空燃比(A/F)時對於CO轉化率的比較(A即是NaOH)………………………………………..……..…134
圖7-18一系列新鮮觸媒於不同空燃比(A/F)時對於HC的轉化率的比較(A即是NaOH)………………………………………..…..134
圖7-19一系列劣化觸媒(1100 ℃,4hr處理)於不同空燃比(A/F)時對於CO轉化率的比較(A即是NaOH)…………………..…..…..135
圖7-20一系列劣化觸媒(1100 ℃,4hr處理)於不同空燃比(A/F)時對於HC轉化率的比較(A即是NaOH)……………………..…….135
圖7-21PtRh/A1203-CeO2觸媒15,000 km路試的結果….…….….…..136
圖7-22Pd/NaOH/A12O3-CeO2觸媒15,000 km路試的結果….…….…136
表 目 錄
表2-1不同pKa值指示劑及其酸鹼態下的顏色………………...22
表2-2反應活性測試之氣體進料比例…….……………………...24
表3-1以初溼含浸法添加5 wt.%不同添加劑對氧化鋁表面積的影響…………………………………………………………29
表3-2經1100℃處理後各觸媒的晶相結構與表面積之比較……31
表3-3分別添加5 wt.% BaO, CeO2, La2O3的Pt與Pd觸媒對於CO飽和吸附量…………………………………………………39
表3-4分別添加5 wt.% BaO, CeO2, La2O3的Pt與Pd觸媒,經1100 oC處理後,以X光繞射線寬推算貴金屬的結晶尺寸……..40
表3-5分別添加5 wt.% BaO, CeO2或La2O3的Pt與Pd觸媒於S=1反應條件下之起燃溫度(Pt或Pd含量為2 wt.%)…………..….41
表3-6分別添加5 wt.% BaO, CeO2, La2O3的Pt與Pd觸媒於S<1反應條件下之起燃溫度(Pt或Pd含量為2 wt.%)…………..….42
表4-1不同製備方法製備之Pd觸媒組成及代號…………….…..49
表4-2添加活性促進劑之Pd觸媒製備條件及代號……………...50
表4-3不同製備方法合成之Pd觸媒於不同?燒溫度下的比表面積、CeO2平均粒徑與Pd分散度比較…………….…..……51
表4-4Pd含浸於不同製備方法合成之CeO2/Al2O3擔體或CeO2、Al2O3(Sol-gel)上,於S=1或0.5反應條件,?燒溫度500 ℃與950 ℃之活性比較……………………………….………..65
表4-5比較溶膠凝膠法與含浸法合成中添加劑對觸媒對表面性質的影響(?燒條件500 ℃;950 ℃)…………………….73
表4-6比較溶膠凝膠法與含浸法合成之不同添加劑對觸媒反應活性之影響(?燒條件500 ℃;950 ℃)………………….76
表5-1各觸媒的BET比表面積、金屬分散度及Ho物性分析…...87
表5-2各觸媒於S=1對於CO及丙烯氧化之起燃溫度(T50)………88
表5-3各Pt觸媒對於丙烯及丙烷氧化反應之起燃溫度(S=1)…...93
表5-4各Pd觸媒對於丙烯及丙烷氧化反應之起燃溫度(S=1)…..94
表6-1觸媒轉化器規格……………………………………………98
表6-2測試車規格表………………………………………………98
表6-3La1-xSrxCo1-yMnyO3 在Co K edgea 的EXAFS 分析結果…100
表6-4La1-xSrxCo1-yMnyO3 在Mn K edge 的EXAFS 分析結果…101
表6-5La1-xSrxCo1-yMnyO3觸媒於S=1反應條件下之活性測試結果103
表6-6 LaCo0.9-xPdxMn0.1O3系列觸媒於S=1對於CO與C3H6起燃溫度…………………………………………………………105
表6-7?燒溫度對LaCo0.84Pd0.06Mn0.1O3/Al2O3於S=1時反應活性之影響……………………………………………………....106
表6-8Pt-Rh與Pd觸媒對於HC及CO氧化之T50溫度比較……..…113
表6-9不含二次空氣ECE-R47污染測試結果…………………….115
表6-10含二次空氣ECE-R47污染測試結果……………………….115
表7-150 ㏄二行程與125㏄四行程機車進行ECE-R40 法規測試結果………………………………………………………...117
表7-250 ㏄二行程與125㏄四行程機車測試車規格…………….118
表7-3觸媒規格…….……………………………………………..119
表7-4模擬機車排放廢氣的組成……………………….………..120
表7-5進行高低溫耐久100 小時的測試條件……….……………121
表7-6彙整4個速度段CO與HC的轉化率變化…………………..127
表7-7觸媒系統中觸媒的規格………….………………………..128
表7-8觸媒位置與孔密度對四行程機車污染物轉化率的影響…129
參考文獻 1S.John Howitt, Catalysis and Automotive Pollution Control, 301 (1987)
2P.Nortier and M. Soustelle, Catalysis and Automotive Pollution Control, 275 (1987)
3K.C.Taylor, Catalysis and Automotive Pollution Coutrol, 97 (1987)
4H.S.Gandhi and M. Shelef, Catalysis and Automotive Pollotion Control, 199 (1987)
5J. Barbier Jr., D. Duprez, Appl. Catal. B, 4, 105 (1994)
6B.Lennart Larsson, O.Lars Lowendahl and Jan-Erik Otterstedt, Catalysis and Automotive Pollution Control, 333 (1987)
7P. L. Silveston, Catalysis Today 25, 175(1995)
8M. Funabiki, T. Yamada and K. Kayano, Catalysis Today, 10, 33(1991)
9J.Michael D'aniello et al, J.Catal., 109, 407(1988)
10P. Marecot et al, Appl. Catal., B, 5, 57(1994)
11A.Lawrence Kennedy and Eli Ruckenstein, Catal. Rev.-Sci.Eng, 26(1), 1(1984)
12D.Richard Gonalez, H. Miura, Catal. Rev.-Sci. Eng., 36(1), 145 (1994)
13A.Cybulski and J. A. Moulijn, Catal. Rev.-Sci. Eng., 36(2) 179 (1994)
14M. Pijolat, M. Dauzat and M. Soustelle, Solid State Ionics, 50,31 (1992)
15F.L.Johnson, J. Catal., 123, 245(1990)
16L.A.Xue, I.W.Chen, J.Mate. Sci. Let., 11, 443(1992)
17P.Rubtin et al, Appl. Catal., 34, 225(1987)
18P.Rubtin et al, Appl. Catal., 34, 239(1987)
19Z.Jaworska-Galas et al., J. Catal., 145,450(1994)
20S.I. Tauster, Ame. Chem. Soc., 20, 389(1987)
21M.S.Heise and J.A.Schwarz, Preparation of Catalysts,1(1987)
22J.T.Kummer, J. Phys. Chem., 90, 4747 (1986)
23J.Robert Farrouto, K.Jordan Lampert,C. Melvin Hobson, M.Earl Waterman, Appl. Catal. B, 6, 263(1995)
24M. Harkonen, M. Kivioja, P. Lappi, P. Mannila, T. Maunula, and T. Slotte, SAE paper 940935(1994)
25V. Ragaini et al, J. Catal., 146, 116(1994)
26R.Thomas Ward, P. Alemany, and R. Hoffmann, J.Phys. Chem., 97, 7691(1993)
27D.D.Beck, T.W.Capehart, C.Wong, and D.N.Belton, J.Catal., 144, 311(1993)
28P.-Y. Lin et al, Appl. Catal. B, 6, 237(1995)
29C. Bouly et al, SAE paper 930778(1993)
30M. Shelef and G.W. Graham, Catal. Rev.-Sci. Eng., 36(3), 433 (1994)
31H. Tanaka, H. Fujikawa, and I. Takahashi, SAE papaer 950256(1995)
32V.D. Staytsenko, Appl. Catal. A, 126, 1(1995)
33A.Matti Harkonen, Z. Aitta, A. Lahti, M. Luoma, and T. Maunula, SAE paper 910846(1991)
34T.Sekiba, S. Kimura, H.Yamamoto, A. Okada, Catalysis Today, 22, 113(1994)
35P. Araya, Juan P. Berrios, and E.E.Wolf, Appl. Catal. A, 92, 17(1992)
36R.W.McCabe, R.K.Usmen, K.Ober, and H.S.Gandhi, J.Catal., 151, 385 (1995)
37E.Sieghard Wanke, A.Jacek Szymura and Y. Ting-Ting , Sinter of Supported Metal Catalysts,65(1986)
38H.Se Oh and C.Carolyn Eickel, J. Catal., 128, 526(1991)
39R. Giannantonio, V. Ragaini, and P. Magni, J. Catal., 146, 103(1994)
40T.Hattori et al. Preparation of Catalysts,815(1987)
41J.David Smith, M. H.Yao, L.F. Allard. A.K. Datye, Catalysis Letters, 31, 57(1995)
42K. Masuda, T.Sano, F.Mizukami, and M. Miyazaki, Catalysis Letters, 32, 139(1995)
43A.Talo, J. Lahtinen, P. Hautojarvi, Appl. Catal. B, 5, 221(1995)
44T.N. Angelidis, S.A. Sklavounos, Appl. Catal., 133, 121(1995)
45B.I.Whittington, C.J.Jiang, D.L. Trimm, Catalysis Today, 26, 47(1995)
46F. Oudet, P. Courtine, and A. Vejux, J. Catal., 114, 112(1988)
47M.Shelef et al, J. Catal., 137, 114 (1992)
48B.Alvin Stiles., Catalysis Today, 14, 269 (1992)
49J.R. Gonzalez-Velasco et al, J. Catal. B, 3, 191 (1994)
50D.J. Pettigrew, D.L. Trimm, and N.W. Cant, Catalysis Letters, 28, 313(1994)
51J.Z.Shyu, W.H.Weber, and H.S.Gandhi, J.Phys. Chem., 92, 4964(1988)
52T. Yamada, K. Kayano and M. funabiki, SAE paper 900611(1990)
53K. Masucda et al, Catalysis letters., 33, 229(1995)
54T.Y. Chou, C.H. Leu, C.T. Yeh, Catalysis Today, 26, 53(1995)
55G.John Nunan et al., J. Catal., 133, 309 (1992)
56B.I.Whittington, C.J. Jiang, D.L.Trimm, Catalysis Today, 26, 41(1995)
57M.S.Spemcer, Catalysis Letters. 32, 9(1995)
58J.G.Nunan, M.J.Cohn and J.T.Donner, Catalysis Today., 14, 277 (1992)
59J.M.Sehwartz and L.D.Schmidt, J. Catal., 138, 283 (1992)
60T. Miki et al, J.Phys. Chem., 94, 6464(1990)
61A.D. Logan and M. Shelef, J. Mater. Res., 9, 468 (1994)
62M. Ozawa, M. Kimura and A. Isogai, J. Alloy. Comp, 1993, 73 (1993)
63E.Stanislaw Golunski,A. Helen Hatcher, R.Rajaram, J.Timothy Truex, Appl. Catal. B, 5, 367(1995)
64P.Fornasiero et al, J. Catal., 151, 168 (1995)
65J.M.Schwartz and L.D.Schmida, J. Catal., 148, 22 (1994)
66J.Steven Schmieg,N.David Belton, Appl. Catal. B, 6, 127(1995)
67F.Oudet, A. Vejux, and P. Courtine, Appl. Catal., 50, 79(1989)
68M. Bettman, R.E. Chase, K. Otto, and W.H.Weber, J. Catal., 117, 447 (1989)
69L.P.Haack, J.E.de Vries, K.Otto and M.S. Chattha, Appl. Catal. A, 82, 199(1992)
70B. Beguin, E. Garbowski and M. Primet, Appl. Catal., 75, 119(1992)
71J. Kwon Suh et al, Microporous Materials, 3, 657 (1995)
72L.P.Haack, C.R. Peters, J.E.de Vries and K. Otto, Appl. Catal., 87, 103 (1992)
73L. Wachowski, P. Kirszensztejn, R. Lopatka and B. Czajka, Mater. Chem. Phys., 37, 29 (1994)
74R.K.Usmen et al, J.Catal., 134, 702 (1992)
75J.M.D.Tascon, A.M.O.Olivan, L.Gonzalez Tejuca, and Alexis T.Bell, J. Phys. Chem., 90, 791(1986)
76T.E.Hoost and K. Otto, Appl. Catal. A, 92, 39 (1992)
77G.W.Graham et al, Catalysis letters, 17, 175 (1993)
78M. Ahmad et al, J. Vac. Sci. Technol. A, 12(4), 2314 (1994)
79K. Masuda et al., Appl. Catal. A, 133, 59(1995)
80M. Machida, K. Eguchi, and H. Arai., J.Am.Cream. Soc., 71[12]1142(1988)
81A. Sepulveda-Zscribano et al., Appl. Catal., 108, 221 (1994)
82B. Beguin, E. Garbowski, and M. Primet., J. Catal., 127, 595 (1991)
83M. Machida, K. Eguchi, and H. Arai., J. Catal., 103, 385 (1987)
84S.Imamura, Y. Tsuji, Y.Miyake, and T. Ito, J. Catal., 151,279(1995)
85R.K.Usmen et al., SAE paper 922336(1992)
86P. Alemany, R.S. Boorse, James M. Burlitch, and R. Hoffmann, J.Phys. Chem., 97, 8464 (1993)
87P. Loof, B.Stenbom, H. Norden, and B. Kasemo, J. Catal., 144, 60(1993)
88B.E.Warren, X-Ray Diffraction, USA:Addition-Wesley Publishing Company, 252(1990)
89Cabe, R. W. Usmen, R. K., Ober, K. and Gandhi, H. S.,J. Catal., 151,386(1995)
90Fagal, G. A. and Elten, A., Appl. Catal., A,52,33 (1994)
91Makoto, M.; Arata, K., J.C.S. Chem. Comm., 1148(1979)
92D. Dou and C.T. Yeh, Appl. Catal.B: Environ., 30,11 (2001)
93C.P Hwang and C.T. Yeh, J. Catal., 182,48(1999)
94M.J. Tiernan, O.E. Finlayson, Appl. Catal.B: Environ.,19,23 (1998)
95C. N. Satterfield, Heterogeneous Catalysis in Industrial Practice second edition, USA: Mcgraw-Hill International Edition ,(1995)
96Y. Zhang, S. Andersson, and M. Muhammed, Appl. Catal.B: Environ., 6,325 (1995)
97G. Zehl, S. Bischoff, F. Mizukami, H. Isutzu H. Jancku, B. Lucke, and K. Maeda, J. Mater. Chem. 5,1893(1995)
98J. Livage, M. Henry, and C. Sanchez, Prog. Solid St. Chem. 18,259(1988).
99D. A. Ward, and E. I. Ko, Ind. Eng. Chem. Res., 34,421(1995)
100K. Masuda, T. Sano, F. Mizukami, and K. Kuno, Appl. Catal.A: General,133,59(1995)
101K. Masuda, T. Sano, F. Mizukami, and M. Watanabe, Catal. Lett., 33,229 (1995)
102K. Masuda, T. Sano, F. Mizukami, K. Kuno, and M. Watanabe, Catalysis and Automotive Pollution Control,557(1991)
103C. Serre, F. Garin, G. Belot, and G. Maire, J. Catal., 141,9(1993)
104S. H. Oh, and C. C. Eickel, J. Catal., 122,543(1988)
105M. Boudard, and H. S. Hwang, J. Catal., 39,44(1975)
106R. D. Monteiro, F. B. Noronba, L. C. Dieguez, and M. Schmal, Appl. Catal. A: General, 131,89(1995)
107R. D. Monteiro, F. B. Noronba, L. C. Dieguez, and M. Schmal, Appl. Catal. A: General, 131,89(1995)
108Srinivasan, R., Davis, B. H., Appl. Catal.,A,140,47 (1996)
109Tanable, K., Hatton, H. and Yamagunchi, T., Critical Reviews in Surface Chemistry, Tokyo,1,1, (1990)
110Garin, F., Andriamasinoro, D., Abdulsamad, A. and Sommer, J., J. Catal., 131, 199 (1991)
111Ng, T. T., Horvat, N., Appl. Catal., A,123, 197 (1995)
112Delmon, B., Roth, J. F., and Armor, J. N., Appl. Catal., A, 61, 1 (1990)
113David, A. W. and Edmond I. K., J. Catal., 150, 18 (1994)
114Pines, H. and Vesely, J. A., J. Am. Chem. Soc., 77, 6314 (1955)
115Hattori, H, Modern trends in catalysis (1998)
116Sokolovskii, V. D., Catt. Today, 24, 377 (1995)
117Ishikawa, A., Satushi, A. and Murakain, Y., Appl. Catal., A,110, 61 (1994)
118Arena, F., Sokolovskii, V., Parmaliana, A. and Girrad, N., J. Catal., 167, 296 (1997)
119Tanabe, K., Misono, M., Ono, Y. and Hattori, H., New solid acids and bases, New York, (1989)
120Satterfiled, C. N., Heterogeneous catalysis in industrial practice, McGraw-Hill, Inc. 2nd, (1993)
121Arena, F. and Cocke, D. L., J. Catal., 132, 58 (1991)
122Fagal, G. A. and Elten, A., Appl. Catal., A,52, 33 (1994)
123Grain, F., Seyfried, L. and Sommer, J., J. Catal., 151,26 (1995)
124Song, X., Sayari, A., Catal. Rev. Sci. Eng., 38,329 (1996)
125Vedrine, J. C. and Volta, F. J., Cat. Today, 32, 115 (1996)
126Tanable, K., Zhang, G. and Hattori, H., Appl. Catal., A, 36, 189 (1988)
127Wang, I. And Fung, J.,Appl. Catal., A, 166, 327 (1998)
128Makoto, M., Arata, K.,J. C. S. Chem. Comm., 851 (1980)
129Arata, K., Hino, M., Appl. Catal., A,59, 197 (1990)
130Shishido, T., Hattori, H., Appl. Catal., A,146, 157 (1996)
131Hattori, H., Ebitana, K. and Konno, H.,J. Catal., 143, 322 (`1993)
132Milburn, D.R., Srinivasan, R. and Davis, B. H., Appl. Catal., A, 147, 110 (1996)
133Hattori, H., Ebitani, K. and Tanaka, T.,J. Catal., 135, 60 (1992)
134Ebitani, K., Tanaka, T., Appl. Catal., A, 102, 79 (1993)
135Jiang, X. Y., Zhou, R.X. and Yuan, X. X., Appl. Catal., 150, 131 (1997).
136Fredrik, A., Appl. Catal., A, 153,157 (1997)
137Cabe, R. W., Usmen, R. K.,Ober, K. and Gandhi, H. S., J. Catal., 151,385 (1995)
138Ebitani, K., Tsuji, J. and Hattori, H., J. Catal. 135, 609 (1992)
139Botas, J. A., Velasco, J. R., Appl. Catal., B 12, 61 (1997)
140H.C.Yao, Y.F.Yu Yao, J. Catal. 86 , 254(1984)
141Malinowski, S. Imelik, B;Naccache, C.; Coudurier, G.; Ben Tarrit, Y.; Vedrine, J. C. Elservier Science Publishers, B. V.: Stud. Surf. Catal., 20.57(1985)
142W.R. Patterson, C. Kemball, J. Catal. 2 , 465(1963)
143J.W.A. Sachtler, I. Onal, R.E. Marinangeli, In A. Crucq, A. Frennet (Eds.), Catalysis and Automotive Pollution Control, Elsevier, Amsterdam, p. 267( 1987)
144D.J. Ball, R.G. Stack, In A. Crucq (Ed.), Catalysis and Automotive Pollution Control, Elsevier, Amsterdam, p. 337(1991)
145E. Koberstein, G. Wannemacher, In A. Crucq, A. Frennet (Eds.), Catalysis and Automotive Pollution Control, Elsevier, Amsterdam, p. 155(1987).
146Wu, S-M Yang, A Wang and H-C Kao, “Emission Control Technologies for 50 and 125 ccc Motorcycles in Taiwan” SAE 980938 (1998)
147R. D. O’Sullivan, “The Application of Exhaust Catalysts to Reduce Emissions Form 2-Stroke 2 Wheelers” CATEC (1999)
148王頌秦等 ”國產摩托車排放現狀及控制過程分析”, 汽車工程, Vol.21, No2(1999)
149Dedeoglu, N. and Kajina, T., “Two-Stage Scavenging Improves Overall Engine Efficiency”, SAE 881263 (1998)
150E. Sher, et al., “Minimizing Short-Circuiting Losses in 2-S Engine by Throttling the Exhaust Pipe”, SAE 901665 (1990)
151H. Muraki, H. Sobukawa, M. Kimura, A. Isogai, SAE Paper 900610(1999)
152D.J. Balland R.G. Stack, SAE Paper 902110(1999)
153S.H. Oh, P.J. Mitchell, and R.M. Siewert, J. Catal., 132, 287(1991)
154T. Sekiba, S. Kimura, H. Yamamoto, and A. Okada, Catalysis Today,22,113(1994)
155H. Tanaka, H. Fujikawa,and I. Takahashi, SAE Paper 930251(1993)
156H. Tanaka, H. Fujikawa, and I.Takahashi, SAE Paper. 950256(1995)
157Wei Wang, Hong-bin Zhang, Guo-dong Lin, Zhi-tao Xioug, Applied Catalysis B: Environmental, Vol. 24, Page 219 (2000)
158Laure Simonot, Francois Garin, Gilbert Maire, Applied Catalysis B: Environmental, Vol.11, Page 167(1997)
159Jau-Huai Lu, et al., SAE Technical Paper 950225(1995)
160Kollmann, K., et al., SAE Technical Paper 940472(1994)
161Gonzalez-Valasco et al., Applied Catalysis B: Environmental, Vol. 12, Page 61(1997)
162H. Tanaka, et al., SAE Technical Paper 950256(1995)
163M. Harkonen et al., SAE Technical Paper 94035(1994)
164S. Matsuura et al., SAE Technical Paper 950257(1995)
165J.S. Hepburn, et at., SAE Technical Paper 941058(1994)
指導教授 楊思明(Sze-Ming Yang) 審核日期 2001-6-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡