博碩士論文 84344004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.231.228.109
姓名 施江霖(Jiang-Lin Shi)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 新式的電信網路主參考信號源
(New Approaches to Primary Reference Source in Telecommunications Networks)
相關論文
★ 以調適性類神經網路系統實現預先失真器補償 RF 功率放大器之非線性效應★ 進化演算法應用在數位濾波器之最佳化設計
★ 進化演算法之動態分析及應用於數位濾波器之設計★ WDM同步光纖網路加入/取出多工器效應之評估
★ PN碼對多重路徑的估測★ 多層感知等化器-使用進化演算法
★ Lp Norm 倒傳遞演算法使用在調適性濾波器★ 利用進化演算法在多層感知機結構上之判別回授等化器
★ 模糊類神經網路結合進化演算法運用在基頻通道等化器上★ 使用進化演算法的模糊化類神經網路等化器
★ 應用進化演算法於類神經網路之判別回授 等化器與探討各參數對performance的影響★ 進化演算法結合多層感知機架構運用在4-QAM決策迴授等化器上
★ 進化演算法應用在多層感知迴授等化 器上之效能分析★ 複數訊號多層感知決策回授等化器-使用進化演算法
★ 頻移相位同調光纖通信系統的效能分析★ 多層感知器對輸入與權值誤差的敏感度分析及倒傳遞(BP)演算法與進化策略(ES)演算法的改善
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於高速網路時代的來臨,今日電信網路對於高準確度的主參考信號源(PRS)的要求比以往更為殷切。在第三章完成一個藉由GPS共同觀測技術同步於國家標準頻率系統的主參考信號源,這是一項非常強而有力的時間與頻率傳送方式。依據ITU-T G.811規定,一個電信主參考信號源的頻率準確度必需優於1×10-11,在這種狀況下,對於64 kbit/s的通路,70天不能大於一個信號滑失(slip)。但為達到相同的滑失率,高速網路其準確度必定少於1×10-13,例如SDH或SONET。這對於現存的大部分網路架構是無法符合的。本文所完成的電信主參考信號源追溯國家頻率標準,準確度達到5×10-14以上。本系統是以低成本,其性能追溯國家頻率標準為5×10-14。而這頻率性能顯示,電信主參考源的頻率偏移優於5×10-14 ±1×10-14,而在這種情形下,幾乎沒有犧牲到頻率穩定度。
第四章,提出利用光纖系統傳送時間及頻率。這系統利用SONET/SDH的 overhead比次(bytes)框架來傳送定時信號。這系統在溫度控制下利用折返(loop back)方式完成測試。試驗結果顯示不管使用5米或35公里長的光纖,其短期時間穩定度達到5 ps,長期頻率穩定度優於1×10-14。而且在35公里的折返實驗,其遲延變化少於1.4 ns。
在這篇論文,提出一個電信主參考源以較便宜的價錢同步到國家標準頻率的高準確度,以大幅提升電信網路性能;同時利用光纖電纜傳送高準確度的時間及頻率,以提供高速網路的需求。以上兩項均得到非常良好的結果。
摘要(英) With the introduction of high-speed networks, today’s telecommunications networks require a more accurate primary reference source (PRS) than conventional ones. A PRS synchronized to the national frequency standard (NFS) based on the technique of global positioning system (GPS) common view, a powerful means for time and frequency transfer, is proposed in chapter 3. According to ITU-T G.811 [2], the frequency accuracy of a PRS should be better than . At this order, the network is allowed to have not greater than one slip in 70 days for any 64 kbit/s channel. To achieve the same slip rate, the accuracy should be less than for a high-speed network such as synchronous digital network (SONET) or synchronous digital hierarchy (SDH). This is not achievable for most existing schemes [3], [4]. The proposed PRS achieves performance comparable to the NFS, which is at present accurate to better than . Our method achieves performance comparable to the NFS, which has frequency accuracy of the order up to , with a lower cost. Performance results indicate that the frequency offset of the PRS is improved to almost without sacrificing the stability. Indicate that a PRS with frequency offset can be improved to .
An optical system for time and frequency transfer via optical fibers, presented in chapter 4. The system used a number of unused overhead bytes of the SONET/SDH frame, in transmitting a timing signal. The system completed the loop-back test in temperature-controlled conditions. Experimental results showed that short-term time stability can be achieved at 5 ps, and long-term frequency stability is better than , regardless of whether the loop-back is a 5 meter or 35 km long optical fiber. Moreover, the delay variation in the 35 km loop-back test was less than 1.4 ns.
In this dissertation, a PRS synchronized to the NFS with high performance and lower cost, used optical fiber to transmitted high precise time and frequency are proposed. All got good results.
關鍵字(中) 關鍵字(英) ★ NFS
★ GPS
★ PRS
★ SONET
★ SDH
論文目次 Chapter 1 Introduction……………………………….. 1
1.1 Motivations………………………………………………………… 1
1.2 Fundamental Concepts of Time and Frequency …………………… 4
1.2.1 Background and Definitions……………………………….. 4
1.2.2 First Definition of the Measure of Frequency Stability—Frequency Domain………………………………………… 7
1.2.3 Second Definition of the Measure of Frequency Stability—Time Domain……………………………………………….. 9
1.2.4 Translation between the Spectral Density of Frequency and the Allan Variance……………………………………………. .11
1.3 Structure of This Dissertation………………………………….…..13
Chapter2 Overview of Telecommunication Synchronization Networks ………………. 14
2.1 Requirements for Primary Reference Source……………………… 14
2.1.1 Background……………………………………………….…14
2.1.2 Impact of Slips on Services………………………………… 17
2.1.3 SONET and SDH Synchronization Needs………………… 19
2.1.4 Error Bursts Caused by Lost of Synchronization………….. 21
2.1.5 Synchronization Performance Objectives—Public Network 22
2.1.6 Synchronization Performance Objectives—Private Network… 23
2.2 Telecommunications Synchronization Architecture……………… 24
2.2.1 Major Method for Synchronization……………………….. 24
2.2.2 Telecommunication Synchronization……………………… 27
2.3 Characteristics of Synchronization Networks
( performance and quality of clocks)……………………………… 29
2.3.1 Source Clocks: Primary Reference Source………………… 29
2.3.2 Receiver Clocks…………………………………………….. 30
2.3.3 Clock Standards…………………………………………….. 32
2.4 Synchronization Performance and Planning……………………… 35
2.4.1 Synchronization Performance……………………………… 35
2.4.2 Synchronization Planning………………………………….. 37
2.5 Summary……………………………………………………………39
Chapter 3 A New Method for Improving Primary Reference Source…………………………..40
3.1 Introduction……………………………………………………….. 40
3.2 Fundamental of GPS ……………………………………………… 43
3.2.1 GPS outline………………………………………………… 45
3.2.2 GPS Time……………………………………………………47
3.2.3 GPS Time Receivers……………………………………….. 47
3.2.4 GPS Time Transfers…………………………………………49
3.3 GPS Common View Based PRS………………….……………….. 51
3.4 System Controller…………………………………………..………53
3.5 Implementation and Results……………………………………….. 58
3.6 Summary…………………………………………………………... 62
Chapter 4 Application to Two-Way Time and Frequency Transfer using SONET/SDH…63
4.1 Introduction………………………………………………………... 63
4.2 Preliminary………………………………………………………… 67
4.3 The System Architecture and Testing Method…………………….. 69
4.3.1 The Transceiver…………………………………………….. 70
4.3.2 The Control Circuit………………………………………….71
4.3.3 The Timing Circuit…………………………………………. 72
4.4 Experiment Results…………………………………………………72
4.5 Summary……………………………………………………………77
Chapter 5 Conclusions and Prospective…………….78
Bibliography…………………………………………. 81
Publications…………………………………………..86
List of figures
2.1 Slip buffer…………………………………………………………. 16
2.2 SONET pointer adjustment……………………………………….. 20
2.3 Cascading errors in primary networks……………………………. 22
2.4 Plesiochronous synchronization…………………………………… 25
2.5 Hierarchical source-receiver synchronization…………………….. 26
2.6 Mutual synchronization……………………………………………. 26
3.1 Number of slips per day for a DS1 communication system………..41
3.2 Schematic illustration of GPS common view………………………51
3.3 A new method for GPS common view based primary reference
source……………………………………………………………….53
3.4 Block diagram of the system controller…………………………… 55
3.5 Relationship of the parameters given in Fig. 3.4….………………. 55
3.6 Method for compensating the error……………………………….. 56
3.7 Block diagram of current implementation………………………… 59
3.8 The difference using common clock and short baseline………….. 59
3.9 Comparison of frequency offset before and after steering
the clock………………………………………………………….. 60
4.1 Two-way time transfer framework………………………………… 66
4.2 System framework………………………………………………… 70
4.3 SONET frame format and byte dedicated to the timing signal……. 71
4.4 Total delay of loop-back test with 5 meters long optical fiber.…….74
4.5 Modified Allan deviation performance of time transfer via
optical fiber………………………………………………………..75
4.6 Total delay of loop-back test with 35 km long optical fiber………. 76
4.7 Time deviation performance of time transfer via optical fiber……. 77
List of tables
2.1 ITU Clock Standards……………………………………………. 33
2.2 ANSI Clock standards…………………………………………... 34
3.1 Comparison of frequency offset and stability before and after
steering the clock………………………………………………. 61
參考文獻 [1] D.W. Allan and M.A. Weiss, “Accurate time and frequency transfer during common view of a GPS satellite,” in Proc. 34th Ann. Symposium on Frequency Control, pp. 334-346, May 1980.
[2] “Timing requirements at the output of primary reference clocks suitable for plesiochronous operation of international digital links,” ITU-T Recommendation G.811.
[3] J.E. Abate, et al, “AT&T’s new approach to the synchronization of telecommunication networks,” IEEE Communications Magazine, vol. 27, no. 4, pp. 35-45, April 1989.
[4] W. Lewandowski, J. Azoubib, and W.J. Klepczynski, “GPS: primary tool for time transfer,” Proc. of the IEEE, vol. 87, no.1, pp. 163-172, Jan. 1999.
[5] M.A. Lombardi, Tutorial on frequency calibrations and time transfer, NIST Time and Frequency Division.
[6] J. Rutman and F.L. Walls, “Characterization of frequency stability in precision frequency sources,” Proc. of the IEEE, vol. 79, no. 6, pp. 952-960, June 1991.
[7] Samuel R. Stein, Frequency and Time—Their Measurement and Characterization, NIST, Characterization of Clocks and Oscillators, pp TN-61, March, 1990.
[8] James A. Barnes, Andrew R. Chi, Characterization of Frequency Stability, NIST, Characterization of Clocks and Oscillators, pp. TN-146, March, 1990.
[9] Study Programme, Characterization of frequency and phase noise, NIST, Characterization of Clocks and Oscillators, pp. TN-162, March, 1990.
[10] J.J. Spilker, Jr., “GPS signal structure and performance characteristics,” Navigation, vol. 25, no. 2, pp.121-122, Summer 1978.
[11] R.J. Miliken and C.J. Zoller, “Principle of operation of NAVSTAR and System Characteristics,” Navigation, vol. 25. no. 2, p.121. Summer 1978.
[12] N Ashby and D.W. Allan, “Practical implications of relativity for a global coordinate time scale,” Radio Science, vol. 14, no. 4, pp. 649-669, 1979.
[13] Wlodzimierz Lewandowski and Claudine Thomas, “GPS Time Transfer,” Proc. 34th Annual Symp. On Frequency Control, pp.334-346, May 1980.
[14] P.F. MacDoran, “Satellite emission radio inerferometric earth surveying, SERIES—GPS geodetic system,” Bull. Geodesique, 1979.
[15] AT&T, “Effects of Synchronization Slips,” ITU-T Contribution COM SpD-TD, NO.32, Geneva, November, 1969.
[16] J. E. Abate, and H. Drucker, “The Effect of Slips on Facsimile Transmission,” IEEE International Conference on Communications, pp. 1022-1025, 1988.
[17] H. Drucker, and A.C. Morton, “The Effect of Slips on Data Modems,” IEEE International Conference on Communications CH2424-0/87/0000-0409 1987.
[18] J. E. Abate, et al, “AT&T’s New Approach to the Synchronization of Telecommunication Networks,” IEEE Communications Magazine, Vol. 27, No. 4, April 1989.
[19] K. Inagaki, et al, “International Connection of Plesiochronous Networks Via TDMA Satellite Link,” International Conference on Communications 1982, IEEE, 0536-1486/82/0000-02221.
[20] M. Decina and Umberto de Julio, “Performance of Integrated Digital Networks: International Standards,” IEEE International Conference on Communications 0536-1486/82/0000-0063 1982.
[21]“Synchronization Interface Standards for Digital Networks,” American National Standard for Telecommunications, ANSI T1.101, 1994.
[22] “The Control of Jitter and Wander Within Syncronization Networks,” European Telecommunication Standards, Draft ETS DE/TM-3017.
[23] “The control of jitter and wander within digital networks which are based on the 1544 kbit/s hierarchies,” ITU-T Recommendation G.824, 1987
[24] “Standard Clock Testing Methodology,” ITU-T COM XVIII D.1378, 1987.
[25] D.W. Allan, clocks and oscillators, “Time and frequency (time-domain) characterization, estimation, and prediction of precision,” IEEE trans. On Ultrasonics, Ferroelectrics, and Frequency Control, vol. UFFC-34, no. 6, pp. 647-654, Nov. 1987.
[26] J.A. Barnes, “The measurement of linear frequency drift in oscillators,” Proc. 15th Annual PTTI Meeting, pp. 551-579, 1983.
[27] J.A. Davis and J.M. Furlong, “Report on the study to determine the suitability of GPS disciplined oscillators as time and frequency standards traceable to the UK national time scale UTC(NPL),” Center for Time Metrology, National Physical Laboratory, NPL Report no. CTM-1, Oct. 1997.
[28] C. Hackman, S.R. Jefferts, and T.E. Parker, “Common-clock two-way satellite time transfer experiments,” Proc. 49th Annual Symp. Frequency Control, pp. 275-281, 1995.
[29] S.R. Jefferts, M.A. Weiss, J. Levine, S. Dilla, E.W. Bell, and T.E. Parker, “Two-way time and frequency transfer using optical fibers,” IEEE Tran. Instrumentation and Measurement, 46(2), pp.209-211, Apr. 1997.
[30] D.W. Allan, “Time and frequency (time-domain) characterization, estimation, and prediction of precision clocks and oscillators,” IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control, 34(6), pp.647-654, Nov. 1987.
[31] “General requirements for the competence of testing and calibration laboratories,” ISO/IEC 17025, 1999.
[32] L.S. Cutler and C.L. Searle, “Some aspects of the theory and measurement of frequency fluctuations in frequency standards,” Proceedings of the IEEE, 54(2), pp.136-154, Feb. 1966.
[33] P. Lesage and C. Audoin, “Characterization and measurement of time and frequency stability,” Radio Science, 14(4), pp. 521-539, 1979.
[34] P. Lesage and T. Ayi, “Characterization of frequency stability: analysis of the modified Allan variance and properties of its estimate,” IEEE Trans. Instrumentation and Measurements, 33(4), pp. 332-336, Dec. 1984.
[35] “Selection and use of precise frequency and time systems,” International Telecommunication Union, Handbook, 1997.
[36] M. J. Klein and R. Urbansky, “Network synchronization — A challenge for SDH/SONET?,” IEEE Commun. Mag., pp.42-50, 1993.
[37] J. C. Bellamy, “Digital network synchronization,” IEEE Commun. Mag., Vol. 33, pp.70-83, 1995.
[38] “Digital hierarchy bit rates,” ITU-T Rec. G.702, 1988.
[39] “Synchronous digital hierarchy bit rates,” ITU-T Rec. G.707, 1993.
[40] R. F. Bridge, S. Bily, J. Klass, and R. Taylor, “Jitter attenuation in T1 networks,” IEEE ICC’90, pp. 685-689, 1990.
[41] H. Sari and G. Karam, “Cancellation of pointer adjustment jitter in SDH networks,” IEEE Trans. Commun. Vol. 42, No. 12, pp.3200-3207 , 1994.
[42] “The control of jitter and wander within digital networks which are based on the 2048 k bit/s hierarchy,” ITU-T Rec. G.823, 1993.
[43] M. Kihara and A. Imaoka, “SDH-based time and frequency transfer system,” Proc. of the ninth European and Time Forum, pp. 317-322, 1995.
Bibliography
[1] D.W. Allan and M.A. Weiss, “Accurate time and frequency transfer during common view of a GPS satellite,” in Proc. 34th Ann. Symposium on Frequency Control, pp. 334-346, May 1980.
[2] “Timing requirements at the output of primary reference clocks suitable for plesiochronous operation of international digital links,” ITU-T Recommendation G.811.
[3] J.E. Abate, et al, “AT&T’s new approach to the synchronization of telecommunication networks,” IEEE Communications Magazine, vol. 27, no. 4, pp. 35-45, April 1989.
[4] W. Lewandowski, J. Azoubib, and W.J. Klepczynski, “GPS: primary tool for time transfer,” Proc. of the IEEE, vol. 87, no.1, pp. 163-172, Jan. 1999.
[5] M.A. Lombardi, Tutorial on frequency calibrations and time transfer, NIST Time and Frequency Division.
[6] J. Rutman and F.L. Walls, “Characterization of frequency stability in precision frequency sources,” Proc. of the IEEE, vol. 79, no. 6, pp. 952-960, June 1991.
[7] Samuel R. Stein, Frequency and Time—Their Measurement and Characterization, NIST, Characterization of Clocks and Oscillators, pp TN-61, March, 1990.
[8] James A. Barnes, Andrew R. Chi, Characterization of Frequency Stability, NIST, Characterization of Clocks and Oscillators, pp. TN-146, March, 1990.
[9] Study Programme, Characterization of frequency and phase noise, NIST, Characterization of Clocks and Oscillators, pp. TN-162, March, 1990.
[10] J.J. Spilker, Jr., “GPS signal structure and performance characteristics,” Navigation, vol. 25, no. 2, pp.121-122, Summer 1978.
[11] R.J. Miliken and C.J. Zoller, “Principle of operation of NAVSTAR and System Characteristics,” Navigation, vol. 25. no. 2, p.121. Summer 1978.
[12] N Ashby and D.W. Allan, “Practical implications of relativity for a global coordinate time scale,” Radio Science, vol. 14, no. 4, pp. 649-669, 1979.
[13] Wlodzimierz Lewandowski and Claudine Thomas, “GPS Time Transfer,” Proc. 34th Annual Symp. On Frequency Control, pp.334-346, May 1980.
[14] P.F. MacDoran, “Satellite emission radio inerferometric earth surveying, SERIES—GPS geodetic system,” Bull. Geodesique, 1979.
[15] AT&T, “Effects of Synchronization Slips,” ITU-T Contribution COM SpD-TD, NO.32, Geneva, November, 1969.
[16] J. E. Abate, and H. Drucker, “The Effect of Slips on Facsimile Transmission,” IEEE International Conference on Communications, pp. 1022-1025, 1988.
[17] H. Drucker, and A.C. Morton, “The Effect of Slips on Data Modems,” IEEE International Conference on Communications CH2424-0/87/0000-0409 1987.
[18] J. E. Abate, et al, “AT&T’s New Approach to the Synchronization of Telecommunication Networks,” IEEE Communications Magazine, Vol. 27, No. 4, April 1989.
[19] K. Inagaki, et al, “International Connection of Plesiochronous Networks Via TDMA Satellite Link,” International Conference on Communications 1982, IEEE, 0536-1486/82/0000-02221.
[20] M. Decina and Umberto de Julio, “Performance of Integrated Digital Networks: International Standards,” IEEE International Conference on Communications 0536-1486/82/0000-0063 1982.
[21]“Synchronization Interface Standards for Digital Networks,” American National Standard for Telecommunications, ANSI T1.101, 1994.
[22] “The Control of Jitter and Wander Within Syncronization Networks,” European Telecommunication Standards, Draft ETS DE/TM-3017.
[23] “The control of jitter and wander within digital networks which are based on the 1544 kbit/s hierarchies,” ITU-T Recommendation G.824, 1987
[24] “Standard Clock Testing Methodology,” ITU-T COM XVIII D.1378, 1987.
[25] D.W. Allan, clocks and oscillators, “Time and frequency (time-domain) characterization, estimation, and prediction of precision,” IEEE trans. On Ultrasonics, Ferroelectrics, and Frequency Control, vol. UFFC-34, no. 6, pp. 647-654, Nov. 1987.
[26] J.A. Barnes, “The measurement of linear frequency drift in oscillators,” Proc. 15th Annual PTTI Meeting, pp. 551-579, 1983.
[27] J.A. Davis and J.M. Furlong, “Report on the study to determine the suitability of GPS disciplined oscillators as time and frequency standards traceable to the UK national time scale UTC(NPL),” Center for Time Metrology, National Physical Laboratory, NPL Report no. CTM-1, Oct. 1997.
[28] C. Hackman, S.R. Jefferts, and T.E. Parker, “Common-clock two-way satellite time transfer experiments,” Proc. 49th Annual Symp. Frequency Control, pp. 275-281, 1995.
[29] S.R. Jefferts, M.A. Weiss, J. Levine, S. Dilla, E.W. Bell, and T.E. Parker, “Two-way time and frequency transfer using optical fibers,” IEEE Tran. Instrumentation and Measurement, 46(2), pp.209-211, Apr. 1997.
[30] D.W. Allan, “Time and frequency (time-domain) characterization, estimation, and prediction of precision clocks and oscillators,” IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control, 34(6), pp.647-654, Nov. 1987.
[31] “General requirements for the competence of testing and calibration laboratories,” ISO/IEC 17025, 1999.
[32] L.S. Cutler and C.L. Searle, “Some aspects of the theory and measurement of frequency fluctuations in frequency standards,” Proceedings of the IEEE, 54(2), pp.136-154, Feb. 1966.
[33] P. Lesage and C. Audoin, “Characterization and measurement of time and frequency stability,” Radio Science, 14(4), pp. 521-539, 1979.
[34] P. Lesage and T. Ayi, “Characterization of frequency stability: analysis of the modified Allan variance and properties of its estimate,” IEEE Trans. Instrumentation and Measurements, 33(4), pp. 332-336, Dec. 1984.
[35] “Selection and use of precise frequency and time systems,” International Telecommunication Union, Handbook, 1997.
[36] M. J. Klein and R. Urbansky, “Network synchronization — A challenge for SDH/SONET?,” IEEE Commun. Mag., pp.42-50, 1993.
[37] J. C. Bellamy, “Digital network synchronization,” IEEE Commun. Mag., Vol. 33, pp.70-83, 1995.
[38] “Digital hierarchy bit rates,” ITU-T Rec. G.702, 1988.
[39] “Synchronous digital hierarchy bit rates,” ITU-T Rec. G.707, 1993.
[40] R. F. Bridge, S. Bily, J. Klass, and R. Taylor, “Jitter attenuation in T1 networks,” IEEE ICC’90, pp. 685-689, 1990.
[41] H. Sari and G. Karam, “Cancellation of pointer adjustment jitter in SDH networks,” IEEE Trans. Commun. Vol. 42, No. 12, pp.3200-3207 , 1994.
[42] “The control of jitter and wander within digital networks which are based on the 2048 k bit/s hierarchy,” ITU-T Rec. G.823, 1993.
[43] M. Kihara and A. Imaoka, “SDH-based time and frequency transfer system,” Proc. of the ninth European and Time Forum, pp. 317-322, 1995.
指導教授 賀嘉律(Chia-Lu Ho) 審核日期 2002-5-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明