博碩士論文 85242001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.145.119.199
姓名 阮文滔(Wen-Tau Juan)  查詢紙本館藏   畢業系所 物理學系
論文名稱 強耦合微粒電漿中的結構與動力行為研究
相關論文
★ 二加一維鏈狀微粒電漿液體微觀運動與結構之實驗研究★ 剪力下的庫倫流體微觀黏彈性反應
★ 脈衝雷射誘發之雷漿塵爆★ 強耦合微粒電漿中脈衝雷射引發電漿微泡
★ 二維強耦合微粒電漿方向序的時空尺度律★ 二維微粒庫倫液體中集體激發微觀動力研究
★ 超薄二維庫侖液體的整齊行為★ 超薄二維微粒電漿庫侖流的微觀運動行為
★ 微米狹縫中之脈衝雷射誘發二維氣泡相互作用★ 介觀微粒庫倫液體之流變學
★ 二維神經網路系統之集體發火動力學行為★ 大白鼠腦皮質層神經元網路之同步發放行為研究
★ 二維團簇腦神經網路之同步發火★ 二維微粒電漿液體微觀結構之記憶行為
★ 微粒電漿中電漿微泡的生成與交互作用之動力行為研究★ 脈衝雷射誘發雙氣泡間薄液層之不穩定性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 微粒電漿為一含微米微粒之弱離化氣體, 微粒上帶大量電荷所產生的巨大庫倫作用力使其成為一強耦合多體庫倫系統. 沿垂直方向的離子流可於微粒下方聚集成離子雲,進而形成垂直的電耦極矩,使得微粒於鉛直方成長鍊狀排列,並於水平面上形成六角晶格的似二維結構. 此一論文主要藉由光學顯微鏡觀測, 探討此一似二維系統在溫度, 有限邊界, 與外加應力的對稱破壞下, 所產生的各種結構改變與相應的動力行為. 於溶化狀態下, 系統展現出大尺度的規則區塊轉動並伴隨著單一拓樸耦極矩沿晶格軸線的運動, 在此一背景下, 微粒隨時間展現出由反相關, 正相關, 至無關的擴散行為. 液態時的不可壓縮性造成微粒產生如渦流般的隨機運動模式且伴隨著拓樸電荷團的快速產生與消滅, 即使結構於空間上的相關性已消失, 但在動力行為上, 由於粒子間的彼此牽引, 仍展現出空間相關性. 在有限邊界的情形下, 微粒由無限邊界的庫倫晶格轉變為圓形微粒庫倫團. 觀測有限微粒數於環形侷限井中的排列, 可架構一相應的古典原子週期表. 溫度所造成的拓樸狀態改變亦可視為同一原子序下的不同簡併態. 大型庫倫團的三角晶格核心與外圍殼狀結構, 同時具備了無限大庫倫晶格與小型庫倫團殼層狀結構的特性, 並於溫度擾動下分別展現出各向同性的渦流運動與殼層間的相對運動模式. 藉由微粒間相互運動的牽引, 外殼層的非均向運動隨時間向核心傳遞. 雷射光壓所產生的力場可推動懸浮液體庫倫團中位於中心帶狀上的微粒. 於光壓帶上,粒子的前進速度會隨整體微粒的排列隨時間上的演變而調制,並隨機產生出垂直於雷射方向傳遞的渦流狀隨機微粒運動,此一渦流強度隨與雷射區間距離的增加而遞減. 長時間的平均速度場展現出位於雷射光束兩邊相反方向的大渦流運動, 且在雷賒區域周圍強大剪流場的邊界層僅有一至兩個粒子平均間距. 溫度輔助下的多體粒子交互作用使此一系統中的多項物理量, 如驅動微粒的平均速度, 微粒的擴散係數, 與等效黏滯力等, 均展現出非線性的雷射功率相關性. 此一結果也由我們於無溫度下的分子動力模擬結果得到應證
摘要(英) The structural and dynamical behaviors of the strongly coupled many body systems at the microscopic level are interesting issues in physics. In a dusty plasma, μm sized particles are charged (about 104 e - / particle) and suspended in weakly ionized glow discharges. It forms a strongly coupled Coulomb system with sub-mm interparticle spacing in the low viscosity gaseous background and provides us an environment to investigate important issues through the optical microscopy.
In this thesis, starting from the highly ordered triangular lattice, the structures and the cooperative particle motions caused by symmetry breaking processes, such as the thermal fluctuations, the finite system boundary under a circular confining field, and the directional driving forces, are widely investigated. In the strongly coupled system, thermal fluctuations destroy the spatial ordering, lower down the effective caging barrier of the particle from the neighbors, promote particle diffusions, and randomize the collective excitations. It governs the microscopic behaviors in different states. The stick-slip type domain rotations and the continuously excited random vortex type motions associated with different anomalous diffusions and the topological evolutions in the melting and the liquid states are observed respectively. Introducing finite numbers of dust particles in the small plasma trap, the strongly coupled quasi-2d dust clusters are first observed.
The finite boundary of the Coulomb cluster not only contributes the lattice bending with six intrinsic defects to form the circular shells around the boundary but also cages the particle motion in the shell region. The generic packing rule of the small cluster with shell structures for the small clusters, and the triangular lattice core surrounded by the outer circular shells for the large cluster are observed. Under thermal fluctuations, particles exhibit the isotropic vortex type excitations in the triangular lattice region and anisotropic rotations along the azimuthal direction in the shell region respectively. Driving rows of dust particle through the cluster center by the optical pressure from a dc laser beam, the microscopic responses of the liquid cluster under the directional driving forces are investigated. The interplay between the tilted effective caging barriers for the driven particle and the vortex type particle excitations dominates the microscopic behaviors. Under the assistance of the thermal fluctuation, the collective forward hopping and the induced cascaded generation of chaotic vortices are enhanced. It further promotes the transverse diffusion with decaying strength from the line source. The mean velocity of the driven particle, viscosity, and the diffusion coefficient show nonlinear dependence on the laser power due to the complicated vortex excitation and relaxation processes. Our MD simulations at zero temperature and above the melting temperature also demonstrate that thermal fluctuations play the key roles for the nonlinear responses.
關鍵字(中) ★ 微粒電漿
★ 庫倫團
★ 異常擴散
★ 拓樸缺陷
★ 電漿晶格
關鍵字(英) ★ dusty plasma
★ Coulomb cluster
★ anomalous diffusion
★ topological defect
★ dusty plasma crystal
論文目次 Cover
Contents
Abstract
List of Tables
List of Figures
Chapter 1 Introduction
Chapter 2 Background and Theory
2.1 Dusty Plasmas
2.2 Other Strongly Coupled Systems
2.3 The Topological Properties of the 2D System
2.4 The Anomalous Diffusion
2.5 Strongly Coupled Coulomb Clusters
2.6 Shear Stress on the SCS
Chapter 3 Experimental Setup and Simulations
3.1 The Experiment
3.2 The MD Simulation
Chapter 4 Results and Discussions
4.1 Microscopic Particle Motions in the Quasi-2D Dusty Plasma
4.2 Topological Properties from Melting to Liquids
4.3 Anomalous Diffusions from Melting to Liquids
4.4 Quasi-2D Dust Coulomb Clusters
4.5 The Sheared 2D SCCC
Chapter 5 Conclusions
References
參考文獻 [1] e.g. G. Binnig, H. Rohrer, and C. Gerber, Phys. Rev. Lett. 49, 57, (1982)
[2] e.g. G. Binnig, C.F. Quate, and C. Gerber, Phys. Rev. Lett. 56, 930, (1986)
[3] N.A. Clark, A.J. Hurd, and B.J. Ackerson, Nature (London) 281,57 (1979)
[4] S. R. Nagel, Rev. Mod. Phys. 64, 321 (1992)
[5] W. Neuhauser, et al., Phys. Rev. A22, 1137 (1980)
[6] W.B. Russel, D.A Sacille, and W.R. Schowalter, Colloidal Dispersions, Cambridge Univ. Press (1989)
[7] P. Pieranski, Contemp. Phys. 24, 25 (1983)
[8] A. Homola and R.O. James, J. Coll. And Int. Sci. 59, 123 (1977)
[9] L. Antl, et al. J. Coll. Surf. 17, 67 (1986)
[10] P. Pieranski, L. Strzlecki and B. Pansu, Phys. Rev. Lett. 50, 900 (1983)
[11] B. Pansu, P. Pieranski, and L. Strzelecki, J. Phys. 44, 531 (1983)
[12] D.H. Van Winkle and C.A. Murray, Phys. Rev. A 34, 262 (1986)
[13] D.H. Van Winkle and C.A. Murray, J. Chem. Phys. 89, 3885 (1988)
[14] Y. Tang, et al., Phys.Rev. Lett. 62, 2401 (1989)
[15] Y. Tang, et al., Phase Trans. 21, 75 (1990)
[16] K. Ito, H. Nakamura, and N. Ise, J. Chem. Phys. 85, 6136 (1986)
[17] K. Kremer, M.O. Robbins, and G.S. Grest, Phys. Rev. Lett. 57, 2694 (1986)
[18] Hu Gang, J.X. Zhu, and D.A. Weitz, Phys. Rev. Lett. 74, 318 (1995)
[19] J.J. Thomson Phil. Mag. S. 6, 7, 39, 236 (1904)
[20] D. J. Wineland, et al., Phys. Rev. Lett. 59, 2935 (1987)
[21] R. Blumel, et al., Nature 334, 309 (1988)
[22] J.P. Schiffer, Phys. Rev. Lett. 70, 818 (1993)
[23] V.M. Bedanov and F.M. Peeters, Phys. Rev. B 49, 2667 (1994)
[24] V.A. Schweigert and F.M. Peeters, Phys. Rev. B 51, 7700 (1995)
[25] A.A. Koulakov and B.I. Shklovskii, Phys. Rev. B 55, 9223 (1997)
[26] S. Nasuno, A. Kudrolli, and J.P. Gollub, Phys. Rev. Lett. 79,949 (1997)
[27] M.E. Cates, J.P. Bouchaud, and P. Claudin, Phys. Rev. Lett. 81, 1841 (1998)
[28] H. Ikezi, Phys. Fluids 29, 1764 (1986)
[29] J.H. Chu and Lin I, Phys. Rev. Lett 72, 4009 (1994)
[30] B. Chapman, Glow Discharge Process (John Wiley & Son, New York), 1980
[31] W.T. Juan, Master Thesis N.C.U (1996)
[32] G. Lapenta, Phys. Rev. Lett. 75, 4409 (1995)
[33] F. Melandso and J. Goree, Phys. Rev. E 52, 5312 (1995)
[34] E. C. Whipple, T.G. Northrop, and D.A. Mendis, J. Geophys. Res. 90, 7405 (1985)
[35] G.E. Thomas, et al., Phys. Rev. Lett. 73, 652 (1994)
[36] A. Melzer, T. Trottenberg, and A. Piel, Phys. Lett. A 191, 301 (1994)
[37] U. Konopka, G. E. Morfill, and L. Ratke, Phys. Rev. Lett. 84, 891 (2000)
[38] J. B. Pieper and J. Goree, Phys. Rev. Lett. 77, 3137 (1996)
[39] D. Samsonov, et al., Phys. Rev. Lett. 83, 3649 (1999)
[40] G. E. Morfill, et al., Phys. Rev. Lett. 83, 1598 (1999)
[41] J. Blum, et al., Phys. Rev. Lett., 85, 2426 (2000)
[42] A. Homann, A. Melzer, S. Peters, and A. Piel, Phys. Rev. E 56, 7138 (1997)
[43] M. Klindworth, A. Melzer, A. Piel and V. A. Schweigert, Phys. Rev. B 61, 8404 (2000)
[44] J. Goree, et al., Phys. Rev. Lett., 84, 5141 (2000)
[45] S.L. Gilbert, J.J. Bollinger, and D.J. Wineland, Phys. Rev. Lett. 60, 2002 (1998)
[46] W. Neuhauseer, et al., Phys. Rev. Lett. 41, 233 (1978)
[47] W. Neuhauser, et al., Phys. Rev. A22, 1137 (1980)
[48] T.H. Sauter, et al., Z. Phys. D10, 153 (1988)
[49] J.J. Bollinger, and D.J. Wineland, Phys. Rev. Lett. 53, 348 (1984)
[50] F.M. Penning, Physica 3, 873 (1936)
[51] H.G. Dehmelt “Adv. Atom. Molec. Phys.” (Edited by D.R. Bates and I. Estermann) (Acadamic Press, New York, 1967), Vol. 3, p.53
[52] D.J. Wineland, and W.M. Itano, Phys. Rev. A 20, 1521 (1979)
[53] F. Diedrich, et al., Phys. Rev. Lett. 59, 2931 (1987)
[54] H. Walther, Physica Scripta T59, 360 (1995)
[55] J. Hoffnage, et al., Phys. Rev. Lett. 61, 255 (1988)
[56] R. Blumel, et al., Phys. Rev. A 40, 808 (1989)
[57] S. Chu, Rev. Mod. Phys. 70, 685 (1998)
[58] J. Javanainen, J. Appl. Phys. 23, 175 (1980)
[59] J. Javanainen, and S. Stenholm, J. Appl. Phys. 21, 283 (1980)
[60] S. Stenholm, Rev. Mod. Phys. 58, 699 (1986)
[61] C.H. Liu and S. R. Nagel, Phys. Rev. Lett. 68, 2301 (1992)
[62] C.H. Liu and S.R. Nagel, Phys. Rev. B 48, 15 646 (1993)
[63] C. H. Liu, S. R. Nagel, D. A. Schecter, S. N. Coppersmith, S. Majumdar, and T. A. Witten, Science 269, 513 (1995)
[64] J.M. Kosterlitz and D.J. Thouless, J. Phys. C 6, 1181 (1973)
[65] B.I. Harperin and D.R. Nelson, Phys. Rev. Lett. 41, 121 (1978)
[66] D.R. Nelson, Phys. Rev. B 26, 269 (1982)
[67] A.P. Young, Phys. Rev. B 19, 1855 (1979)
[68] C.H. Chiang and Lin I, Phys. Rev. Lett. 77, 647 (1996)
[69] For example, J. Feder, in Fractals (Plenum Press, New York, 1988), Chap. 9; J. Klafter, M. F. Shlesinger, and G. Zumofen, Phys. Today 49, No. 2, 33 (1995).
[70] T. H. Solomon, E. R. Weeks, and H. L. Swinney, Phys. Rev. Lett. 71, 3975 (1993).
[71] T. Bohr and A. Pikovsky, Phys. Rev. Lett. 70, 2892 (1993).
[72] A.J. Hurd and P. Ho, Phys. Rev. Lett. 62, 3034 (1989)
[73] A.J.C. Ladd, et al., Phys. Rev. E52, 6550 (1995)
[74] E.P. Wigner, Trans. Faraday Soc. 34, 678 (1938)
[75] P. Leiderer, W. Ebner, and V.B. Shinkin, Surf. Sci. 113, 405 (1982)
[76] C.C Grimes and G. Adams, Phys. Rev. Lett. 42, 795 (1979)
[77] G. Deville, et al., Phys. Rev. Lett. 53, 588 (1984)
[78] Nanostructure Physics and Fabrication, edited by M.A. Reed and W.P. Kirk (Acadamic, Boston, 1989)
[79] Y.J. Lai and Lin I, Phys. Rev. E60, 4743 (1999)
[80] D. Tabor and R. Winterton, Proc. R. Soc. A312, 435 (1969)
[81] J.N. Israelachvili and D. Tabor, Nature 241, 148 (1973)
[82] J.N. Israelachvili, A.M. Homola, and P.M. McGuiggan, Science 240, 189 (1988)
[83] B.J. Briscoe, D.C. Evans, and D. Tabor, J. Colloid Interface Sci. 61, 9 (1977)
[84] S. Granick, Science 253, 1374 (1991)
[85] H.W. Hu, G.A. Carson, and S. Granick, Phys. Rev. Lett. 66, 2758 (1991)
[86] J. Klein, D. Perahia, and S Warburg, Nature 352, 143 (1991)
[87] C. Rhykerd, M. Schoen, D. Diestler, and J. Cushman, Nature 330, 461 (1987)
[88] M. Schoen, D. Diestler, and J. Cushman, J. Chem. Phys 87, 5464 (1987)
[89] M. Schoen, D. Diestler, and J. Cushman, Phys. Rev. B47, 5603 (1987)
[90] D. Diestler, M. Schoen, and J. Cushman, Science 262, 545 (1993)
[91] K.K. Han, J. Cushman, and D. Diestler, J. Mole. Phys. 79, 537 (1993)
[92] T. Baumberger, F. Heslot and B. Perrin, Nature 367, 544 (1994)
[93] T. Baumberger, et al., Phys. Rev. E 51, 4005, 1995
[94] E. Rabinowicz, Friction and Wear of Materials (Wiley, New York, 1965)
[95] C.H. Scholz, The mechanics of Earthquakes and Faulting (Cambridge Univ. Press, 1990)
[96] F.P. Bowden, and D. Tabor, The Friction and Lubrication of Solid (Clarendon, Oxford 1950)
[97] J.T. Oden, J.A.C. Martins, Comp. Math. Appl. Mech. Engeg. 52, 527 (1985)
[98] H.M. Jeagar, S.R. Nagel, Science 255, 1523 (1992)
[99] W.F. Brace and J.J. Byerlee Science 15, 990 (1966)
[100] B. Brushan, et al., Nature 374, 607 (1995)
[101] F. Family, Y. Braiman, and H.G.E. Hentschel, Friction, Arching, Contact Dynamics, edited by D.E. Wolf and P. Grassberger (Word Scientific, Singapore, 1996)
[102] C. Mak and J. Krim, Faraday Discuss. 107, 389 (1997)
[103] Y. Braiman, et al., Phys. Rev. E59, R4737, 1999
[104] Lin I, Wen-Tau Juan and Yuh-Chyi Wang, Physica Scripta T84, 73 (2000)
[105] Lin I, Wen-Tau Juan, C.H. Chiang, and J.H. Chu, Science 272, 1626 (1996)
[106] Wen-Tau Juan and Lin I, Phys. Rev. Lett. 80, 3073 (1998)
[107] Wen-Tau Juan, et al., Phys. Rev. E 58, R6947 (1998)
[108] Wen-Tau Juan, et al., Chinese J. Phys. 37, 184 (1999)
[109] D.L. Malandro and D.J. Lack, Phys. Rev. Lett. 81, 5576 (1998)
[110] F.H. Stillinger, Science, 267, 1935 (1995)
指導教授 伊林(Lin I) 審核日期 2000-12-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明